Warning! The directory is not yet complete and will be amended until the beginning of the term.
250006 PS Introductory seminar on selected topics in differential equations (2009S)
Continuous assessment of course work
Labels
Details
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 05.03. 10:00 - 12:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 19.03. 10:00 - 12:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 26.03. 10:00 - 12:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 02.04. 10:00 - 12:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 23.04. 10:00 - 12:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 30.04. 10:00 - 12:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 07.05. 10:00 - 12:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 14.05. 10:00 - 12:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 28.05. 10:00 - 12:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 04.06. 10:00 - 12:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 18.06. 10:00 - 12:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 25.06. 10:00 - 12:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
Information
Aims, contents and method of the course
The proseminar complements the course material and provides feedback for the homework assignments.
Assessment and permitted materials
evaluation of three homework assignments.
Minimum requirements and assessment criteria
A basic understanding of free surface water waves, ranging from linear theory to nonlinear aspects.
Examination topics
An interplay of methods from various branches of pure mathematics (e.g. topology, complex analysis, functional analysis, differential equations, differential geometry, partial differential equations) and applied mathematics (e.g. multiple scales, non-dimensionalisation) will be used.
Reading list
We recommand the following books
1. R. Johnson, A modern introduction to the mathematical theory of water
waves, Cambridge University Press, Cambridge, 1997.
2. P. Drazin and R. Johnson, Solitons: an introduction, Cambridge University Press, Cambridge, 1989.
3. A. Majda and A. Bertozzi, Vorticity and incompressible flow, Cambridge University Press, Cambridge, 2002.
1. R. Johnson, A modern introduction to the mathematical theory of water
waves, Cambridge University Press, Cambridge, 1997.
2. P. Drazin and R. Johnson, Solitons: an introduction, Cambridge University Press, Cambridge, 1989.
3. A. Majda and A. Bertozzi, Vorticity and incompressible flow, Cambridge University Press, Cambridge, 2002.
Association in the course directory
MANV
Last modified: Tu 02.07.2024 00:16