Warning! The directory is not yet complete and will be amended until the beginning of the term.
250009 VO Algebraic topology (2009S)
Labels
Details
Language: German
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Monday 02.03. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Tuesday 03.03. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Wednesday 04.03. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Thursday 05.03. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Monday 09.03. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Tuesday 10.03. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Wednesday 11.03. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Monday 16.03. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Tuesday 17.03. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Wednesday 18.03. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Thursday 19.03. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Monday 23.03. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Tuesday 24.03. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Wednesday 25.03. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Thursday 26.03. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Monday 30.03. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Tuesday 31.03. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Wednesday 01.04. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Thursday 02.04. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Monday 20.04. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Tuesday 21.04. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Wednesday 22.04. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Thursday 23.04. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Monday 27.04. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Tuesday 28.04. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Wednesday 29.04. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Thursday 30.04. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Monday 04.05. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Tuesday 05.05. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Wednesday 06.05. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Thursday 07.05. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Monday 11.05. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Tuesday 12.05. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Wednesday 13.05. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Thursday 14.05. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Monday 18.05. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Tuesday 19.05. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Wednesday 20.05. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Monday 25.05. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Tuesday 26.05. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Wednesday 27.05. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Thursday 28.05. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Wednesday 03.06. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Thursday 04.06. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Monday 08.06. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Tuesday 09.06. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Wednesday 10.06. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Monday 15.06. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Tuesday 16.06. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Wednesday 17.06. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Thursday 18.06. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Monday 22.06. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Tuesday 23.06. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Wednesday 24.06. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Thursday 25.06. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Monday 29.06. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
- Tuesday 30.06. 11:10 - 11:55 Seminarraum 2A310 3.OG UZA II
Information
Aims, contents and method of the course
This introductory course will cover basic material from Algebraic Topology including the fundamental group, covering spaces and singular homology. We will also discuss numerous applications of these methods, eg. a proof of the fundamental theorem of algebra using the concept of fundamental group, a proof of Brouwer's fixed point theorem using homology theory, or a proof of the fact that subgroups of free groups are free which is based on results about covering projections. Further information: http://www.mat.univie.ac.at/~stefan/AT09.html
Assessment and permitted materials
Oral exam.
Minimum requirements and assessment criteria
To become acquainted with basic methods in Algebraic Topology and their application.
Examination topics
Algebraic Topology studies topological spaces and continuous maps by associating algebraic objects (eg. groups, rings, or algebras) to spaces, and homomorphisms to continuous maps.
Reading list
[] A. Hatcher, Algebraic Topology, Cambridge University Press.
Frei erhältlich unter: http://www.math.cornell.edu/~hatcher/AT/ATpage.html
[] R. Stoecker und H. Zieschang, Algebraische Topologie. Eine Einfuehrung. B.G. Teubner, Stuttgart.
Frei erhältlich unter: http://www.math.cornell.edu/~hatcher/AT/ATpage.html
[] R. Stoecker und H. Zieschang, Algebraische Topologie. Eine Einfuehrung. B.G. Teubner, Stuttgart.
Association in the course directory
MGET
Last modified: Sa 02.04.2022 00:24