Warning! The directory is not yet complete and will be amended until the beginning of the term.
250009 VO Partial differential equations (2017W)
Labels
Details
Language: English
Examination dates
- Wednesday 31.01.2018 09:45 - 11:45 Hörsaal 9 Oskar-Morgenstern-Platz 1 1.Stock
- Monday 05.02.2018
- Wednesday 21.03.2018 11:30 - 14:45 Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Stock
- Friday 06.07.2018 09:45 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 09.01.2019
Lecturers
Classes (iCal) - next class is marked with N
- Monday 02.10. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 09.10. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 16.10. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 23.10. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 30.10. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 06.11. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 13.11. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 20.11. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 27.11. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 04.12. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 11.12. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 08.01. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 15.01. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 22.01. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 29.01. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Wriiten exam (late January/early February)
Minimum requirements and assessment criteria
Required courses: multivariate analysis, linear algebra, ordinary differential equations
Examination topics
Details for the exam material and the exam dates will be provided during the lectures.
Reading list
Parts of the following textbooksStrauss, Walter A. Partial differential equations. An introduction. Second edition. John Wiley & Sons, Ltd., Chichester, 2008. x+454 pp.Evans, Lawrence C. Partial differential equations. Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010. xxii+749 pp. (Part I)will be discussed.
Association in the course directory
DGL
Last modified: Mo 07.09.2020 15:40
examples from problems in physics, a background in physics is not
required. The course will focus primarily on the theory of linear partial differential equations. Some discussion of nonlinear aspects will be given as time permits.