Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250009 VO Partial differential equations (2017W)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 02.10. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 09.10. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 16.10. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 23.10. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 30.10. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 06.11. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 13.11. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 20.11. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 27.11. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 04.12. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 11.12. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 08.01. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 15.01. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 22.01. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 29.01. 09:45 - 12:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

The course is a basic introductory course in partial differential equations. While the course draws most of its
examples from problems in physics, a background in physics is not
required. The course will focus primarily on the theory of linear partial differential equations. Some discussion of nonlinear aspects will be given as time permits.

Assessment and permitted materials

Wriiten exam (late January/early February)

Minimum requirements and assessment criteria

Required courses: multivariate analysis, linear algebra, ordinary differential equations

Examination topics

Details for the exam material and the exam dates will be provided during the lectures.

Reading list

Parts of the following textbooks

Strauss, Walter A. Partial differential equations. An introduction. Second edition. John Wiley & Sons, Ltd., Chichester, 2008. x+454 pp.

Evans, Lawrence C. Partial differential equations. Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010. xxii+749 pp. (Part I)

will be discussed.

Association in the course directory

DGL

Last modified: Mo 07.09.2020 15:40