Warning! The directory is not yet complete and will be amended until the beginning of the term.
250009 VO Partial differential equations (2018W)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Tuesday 22.01.2019
- Monday 04.02.2019
- Friday 08.03.2019
- Friday 12.04.2019
- Tuesday 04.06.2019
- Friday 07.06.2019
- Friday 21.06.2019
- Friday 26.07.2019
- Friday 04.10.2019
- Friday 10.01.2020
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 03.10. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 10.10. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 17.10. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 24.10. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 31.10. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 07.11. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 14.11. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 21.11. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 28.11. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 05.12. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 12.12. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 09.01. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 16.01. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 23.01. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 30.01. 11:30 - 13:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Provides a basic introduction to Partial Differential Equations
Assessment and permitted materials
oral exam
Minimum requirements and assessment criteria
Passing the oral exam
Examination topics
Introduction of the basic types of linear partial differential equations
(Laplace's, heat and wave equation),
Nonlinear partial differential equations of first order and the method of characteristics,
Fouriertransformation for the solution of PDEs and
applications of PDEs
(Laplace's, heat and wave equation),
Nonlinear partial differential equations of first order and the method of characteristics,
Fouriertransformation for the solution of PDEs and
applications of PDEs
Reading list
Evans: Partial Differential Equations
Association in the course directory
DGL
Last modified: Mo 07.09.2020 15:40