Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250011 VO Ordinary differential equations (2013W)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Tuesday 01.10. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 07.10. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 08.10. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 14.10. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 15.10. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 21.10. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 22.10. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 28.10. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 29.10. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 04.11. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 05.11. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 11.11. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 12.11. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 18.11. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 19.11. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 25.11. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 26.11. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 02.12. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 03.12. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 09.12. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 10.12. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 16.12. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 17.12. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 07.01. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 13.01. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 14.01. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 20.01. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 21.01. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 27.01. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 28.01. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

Whatever you may want to model, in physcis, biology, engineering or economy, usually it will be by means of differential equations. This course is an introduction to the theory of ordinary differential equations, with an outlook on dynamical systems (evolution equations). The latter is less about finding the explicit solutions (which is possible only in the most simple cases anyhow), but more about the qualitative properties of solutions (e.g. the long-term behaviour). The themes of this course include:
- Specific solving methods;
- Existence and uniqueness results for the solution of differential equations;
- Solution of linear systems of differential equations;
- Interpretation of differential equations as dynamical systems;
- Classification of equilibrium points (Hartman-Grobman Theorem);

Assessment and permitted materials

Assesment of the course is by oral examination. The assessment for the exercises is based on preparation/presentation during the exercises classes.

Minimum requirements and assessment criteria

Examination topics

Three hours lectures + one hour exercises. (one exercise group in German and one in English)

Reading list

Vorlesungsskriptum von Prof. G. Teschl
P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964.
M. W. Hirsch, S. Smale, and R. L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, Elsevier/Academic Press, Amsterdam, 2004.
K. Jänich, Analysis, 2. Auflage, Springer, Berlin, 1990.
C. Robinson, Introduction to Dynamical Systems: Discrete and Continuous, Prentice Hall, New York, 2004.

Association in the course directory

DGL

Last modified: Mo 07.09.2020 15:40