Warning! The directory is not yet complete and will be amended until the beginning of the term.
250011 VO Ordinary differential equations (2013W)
Labels
Details
Language: German
Examination dates
- Friday 14.02.2014
- Tuesday 04.03.2014
- Wednesday 05.03.2014
- Tuesday 29.04.2014
- Wednesday 14.05.2014
- Thursday 12.06.2014
- Wednesday 30.07.2014
- Monday 15.09.2014
- Monday 15.12.2014
- Friday 06.02.2015
- Thursday 05.03.2015
- Tuesday 09.06.2015
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 01.10. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 07.10. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 08.10. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 14.10. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 15.10. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 21.10. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 22.10. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 28.10. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 29.10. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 04.11. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 05.11. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 11.11. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 12.11. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 18.11. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 19.11. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 25.11. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 26.11. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 02.12. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 03.12. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 09.12. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 10.12. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 16.12. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 17.12. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 07.01. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 13.01. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 14.01. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 20.01. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 21.01. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 27.01. 09:00 - 10:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 28.01. 10:00 - 10:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Assesment of the course is by oral examination. The assessment for the exercises is based on preparation/presentation during the exercises classes.
Minimum requirements and assessment criteria
Examination topics
Three hours lectures + one hour exercises. (one exercise group in German and one in English)
Reading list
Vorlesungsskriptum von Prof. G. Teschl
P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964.
M. W. Hirsch, S. Smale, and R. L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, Elsevier/Academic Press, Amsterdam, 2004.
K. Jänich, Analysis, 2. Auflage, Springer, Berlin, 1990.
C. Robinson, Introduction to Dynamical Systems: Discrete and Continuous, Prentice Hall, New York, 2004.
P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964.
M. W. Hirsch, S. Smale, and R. L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, Elsevier/Academic Press, Amsterdam, 2004.
K. Jänich, Analysis, 2. Auflage, Springer, Berlin, 1990.
C. Robinson, Introduction to Dynamical Systems: Discrete and Continuous, Prentice Hall, New York, 2004.
Association in the course directory
DGL
Last modified: Mo 07.09.2020 15:40
- Specific solving methods;
- Existence and uniqueness results for the solution of differential equations;
- Solution of linear systems of differential equations;
- Interpretation of differential equations as dynamical systems;
- Classification of equilibrium points (Hartman-Grobman Theorem);