Warning! The directory is not yet complete and will be amended until the beginning of the term.
250013 VO Computer algebra (2011S)
Labels
Details
Language: German
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Friday 04.03. 14:00 - 16:00 Seminarraum
- Thursday 10.03. 15:00 - 17:00 Seminarraum
- Friday 11.03. 14:00 - 16:00 Seminarraum
- Thursday 17.03. 15:00 - 17:00 Seminarraum
- Friday 18.03. 14:00 - 16:00 Seminarraum
- Thursday 24.03. 15:00 - 17:00 Seminarraum
- Friday 25.03. 14:00 - 16:00 Seminarraum
- Thursday 31.03. 15:00 - 17:00 Seminarraum
- Friday 01.04. 14:00 - 16:00 Seminarraum
- Thursday 07.04. 15:00 - 17:00 Seminarraum
- Friday 08.04. 14:00 - 16:00 Seminarraum
- Thursday 14.04. 15:00 - 17:00 Seminarraum
- Friday 15.04. 14:00 - 16:00 Seminarraum
- Thursday 05.05. 15:00 - 17:00 Seminarraum
- Friday 06.05. 14:00 - 16:00 Seminarraum
- Thursday 12.05. 15:00 - 17:00 Seminarraum
- Friday 13.05. 14:00 - 16:00 Seminarraum
- Thursday 19.05. 15:00 - 17:00 Seminarraum
- Friday 20.05. 14:00 - 16:00 Seminarraum
- Thursday 26.05. 15:00 - 17:00 Seminarraum
- Friday 27.05. 14:00 - 16:00 Seminarraum
- Friday 03.06. 14:00 - 16:00 Seminarraum
- Thursday 09.06. 15:00 - 17:00 Seminarraum
- Friday 10.06. 14:00 - 16:00 Seminarraum
- Thursday 16.06. 15:00 - 17:00 Seminarraum
- Friday 17.06. 14:00 - 16:00 Seminarraum
- Friday 24.06. 14:00 - 16:00 Seminarraum
- Thursday 30.06. 15:00 - 17:00 Seminarraum
Information
Aims, contents and method of the course
Assessment and permitted materials
Written or oral examination after the end of the lectures.
Minimum requirements and assessment criteria
Examination topics
Reading list
1.) von zur Gathen, Joachim; Gerhard, Jürgen:
Modern computer algebra. 1999.
2.) Forster, Otto: Algorithmische Zahlentheorie. 1996.
3.) Buchmann, Johannes A.: Introduction to cryptography. 2004.
4.) Sturmfels, Bernd: Solving systems of polynomial equations. 2002
5.) Cox, David; Little, John; O'Shea, Donal: Ideals,
Varieties and Algorithms. 1997.
Modern computer algebra. 1999.
2.) Forster, Otto: Algorithmische Zahlentheorie. 1996.
3.) Buchmann, Johannes A.: Introduction to cryptography. 2004.
4.) Sturmfels, Bernd: Solving systems of polynomial equations. 2002
5.) Cox, David; Little, John; O'Shea, Donal: Ideals,
Varieties and Algorithms. 1997.
Association in the course directory
MALV
Last modified: Mo 07.09.2020 15:40
tools and computer software are developed for the exact
(and not numerical) solution of equations. The basic objects
of computer algebra are numbers and polynomials.
We concentrate on topics in algorithmic number theory and algorithmic algebra, including
prime number tests, factorizing algorithms and Groebner bases.