Warning! The directory is not yet complete and will be amended until the beginning of the term.
250014 VO Mathematical Methods of Data Analysis (2005W)
Mathematical Methods of Data Analysis
Labels
Details
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- Friday 07.10. 13:15 - 14:45 Seminarraum
- Monday 10.10. 13:15 - 14:45 Seminarraum
- Friday 14.10. 13:15 - 14:45 Seminarraum
- Monday 17.10. 13:15 - 14:45 Seminarraum
- Friday 21.10. 13:15 - 14:45 Seminarraum
- Monday 24.10. 13:15 - 14:45 Seminarraum
- Friday 28.10. 13:15 - 14:45 Seminarraum
- Monday 31.10. 13:15 - 14:45 Seminarraum
- Friday 04.11. 13:15 - 14:45 Seminarraum
- Monday 07.11. 13:15 - 14:45 Seminarraum
- Friday 11.11. 13:15 - 14:45 Seminarraum
- Monday 14.11. 13:15 - 14:45 Seminarraum
- Friday 18.11. 13:15 - 14:45 Seminarraum
- Monday 21.11. 13:15 - 14:45 Seminarraum
- Friday 25.11. 13:15 - 14:45 Seminarraum
- Monday 28.11. 13:15 - 14:45 Seminarraum
- Friday 02.12. 13:15 - 14:45 Seminarraum
- Monday 05.12. 13:15 - 14:45 Seminarraum
- Friday 09.12. 13:15 - 14:45 Seminarraum
- Monday 12.12. 13:15 - 14:45 Seminarraum
- Friday 16.12. 13:15 - 14:45 Seminarraum
- Monday 09.01. 13:15 - 14:45 Seminarraum
- Friday 13.01. 13:15 - 14:45 Seminarraum
- Monday 16.01. 13:15 - 14:45 Seminarraum
- Friday 20.01. 13:15 - 14:45 Seminarraum
- Monday 23.01. 13:15 - 14:45 Seminarraum
- Friday 27.01. 13:15 - 14:45 Seminarraum
- Monday 30.01. 13:15 - 14:45 Seminarraum
Information
Aims, contents and method of the course
Assessment and permitted materials
Minimum requirements and assessment criteria
The goal is an understanding of basic method of modern data
analysis, leading to familiarity with and enabling to assess
concepts, techniques and algorithms for the analysis of large
data sets.
analysis, leading to familiarity with and enabling to assess
concepts, techniques and algorithms for the analysis of large
data sets.
Examination topics
See topics
Reading list
Ein sehr empfehlenswertes Buch, das aber nur in Teilen der
Vorlesung entspricht, ist:B.D. Ripley,
Pattern Recognition and Neural Networks,
Cambridge University Press, 1996.
Vorlesung entspricht, ist:B.D. Ripley,
Pattern Recognition and Neural Networks,
Cambridge University Press, 1996.
Association in the course directory
Last modified: Mo 07.09.2020 15:40
regularization, covariance analysis, classification,
time series analysis, fast Fourier transform,
wavelets, neural networks, fuzzy logic2. Application areas; e.g.,
artificial intelligence, pattern recognition,
image analysis, tomography,
protein folding, animal husbandry,
weather forecast, climate modeling,
high energy particle tracks, mathematical financeThe choice from these topics will partially depend on the
interests of the participants.