Warning! The directory is not yet complete and will be amended until the beginning of the term.
250014 UE Tutorials to linear algebra and geometry 2 (2008W)
Continuous assessment of course work
Labels
Summary
Registration/Deregistration
Groups
Group 1
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 08.10. 11:00 - 11:45 Seminarraum
- Wednesday 15.10. 11:00 - 11:45 Seminarraum
- Wednesday 22.10. 11:00 - 11:45 Seminarraum
- Wednesday 29.10. 11:00 - 11:45 Seminarraum
- Wednesday 05.11. 11:00 - 11:45 Seminarraum
- Wednesday 12.11. 11:00 - 11:45 Seminarraum
- Wednesday 19.11. 11:00 - 11:45 Seminarraum
- Wednesday 26.11. 11:00 - 11:45 Seminarraum
- Wednesday 03.12. 11:00 - 11:45 Seminarraum
- Wednesday 10.12. 11:00 - 11:45 Seminarraum
- Wednesday 17.12. 11:00 - 11:45 Seminarraum
- Wednesday 07.01. 11:00 - 11:45 Seminarraum
- Wednesday 14.01. 11:00 - 11:45 Seminarraum
- Wednesday 21.01. 11:00 - 11:45 Seminarraum
- Wednesday 28.01. 11:00 - 11:45 Seminarraum
Group 2
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- Friday 10.10. 10:15 - 11:00 Seminarraum
- Friday 17.10. 10:15 - 11:00 Seminarraum
- Friday 24.10. 10:15 - 11:00 Seminarraum
- Friday 31.10. 10:15 - 11:00 Seminarraum
- Friday 07.11. 10:15 - 11:00 Seminarraum
- Friday 14.11. 10:15 - 11:00 Seminarraum
- Friday 21.11. 10:15 - 11:00 Seminarraum
- Friday 28.11. 10:15 - 11:00 Seminarraum
- Friday 05.12. 10:15 - 11:00 Seminarraum
- Friday 12.12. 10:15 - 11:00 Seminarraum
- Friday 19.12. 10:15 - 11:00 Seminarraum
- Friday 09.01. 10:15 - 11:00 Seminarraum
- Friday 16.01. 10:15 - 11:00 Seminarraum
- Friday 23.01. 10:15 - 11:00 Seminarraum
- Friday 30.01. 10:15 - 11:00 Seminarraum
Information
Aims, contents and method of the course
The topics of the corresponding lecture course are discussed and deepened on the basis of exercises. In particular, abstract contents are retraced at concrete examples. The exercises are to be prepared prior to the lectures, the participants quote which of them they were able to solve and present selected exercises.
Assessment and permitted materials
Erfolgreicher Abschluss durch regelmäßige Mitarbeit und Präsentationen, sowie ausreichende Leistungen bei Zwischenprüfungen.
Minimum requirements and assessment criteria
Learn to solve mathematical problems.
Examination topics
Interaktiv.
Reading list
H. Mitsch, Lineare Algebra und Geometrie.
H. Anton, Lineare Algebra
E. Brieskorn, Lineare Algebra und analytische Geometrie
G. Fischer, Lineare Algebra
K. Jänich, Lineare Algebra
W. Klingenberg, Lineare Algebra und Geometrie
M. Koecher, Lineare Algebra und analytische Geometrie
F. Lorenz, Lineare Algebra
H. Rindler, Vorlesungsskriptum Lineare Algebra und Geometrie
H. Zieschang, Lineare Algebra und Geometrie
H. Anton, Lineare Algebra
E. Brieskorn, Lineare Algebra und analytische Geometrie
G. Fischer, Lineare Algebra
K. Jänich, Lineare Algebra
W. Klingenberg, Lineare Algebra und Geometrie
M. Koecher, Lineare Algebra und analytische Geometrie
F. Lorenz, Lineare Algebra
H. Rindler, Vorlesungsskriptum Lineare Algebra und Geometrie
H. Zieschang, Lineare Algebra und Geometrie
Association in the course directory
LAG
Last modified: We 09.09.2020 00:28