Universität Wien

250016 VO Stochastic Mass Transport (2021S)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

Initially all meetings will be held online.
Registered students will receive a zoom link via E-mail shortly before the start of the lecture.
If at some point the University re-opens, we will go back to the usual teaching format, using the reserved Seminar rooms .

  • Tuesday 02.03. 09:45 - 11:15 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 05.03. 09:45 - 10:30 Digital
    Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 09.03. 09:45 - 11:15 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 16.03. 09:45 - 11:15 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 19.03. 09:45 - 10:30 Digital
    Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 23.03. 09:45 - 11:15 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 26.03. 09:45 - 10:30 Digital
    Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 13.04. 09:45 - 11:15 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 16.04. 09:45 - 10:30 Digital
    Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 20.04. 09:45 - 11:15 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 23.04. 09:45 - 10:30 Digital
    Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 27.04. 09:45 - 11:15 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 30.04. 09:45 - 10:30 Digital
    Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 04.05. 09:45 - 11:15 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 07.05. 09:45 - 10:30 Digital
    Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 11.05. 09:45 - 11:15 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 14.05. 09:45 - 10:30 Digital
    Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 18.05. 09:45 - 11:15 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 21.05. 09:45 - 10:30 Digital
    Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 28.05. 09:45 - 10:30 Digital
    Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 01.06. 09:45 - 11:15 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 04.06. 09:45 - 10:30 Digital
    Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 08.06. 09:45 - 11:15 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 11.06. 09:45 - 10:30 Digital
    Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 15.06. 09:45 - 11:15 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 18.06. 09:45 - 10:30 Digital
    Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 22.06. 09:45 - 11:15 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 25.06. 09:45 - 10:30 Digital
    Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 29.06. 09:45 - 11:15 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

The theory of optimal transport (OT) has seen a tremendous development in the last 25 years with fascinating applications ranging from geometric and functional inequalities over PDEs and geometry to image analysis, statistics and machine learning. In recent years, variants of the optimal transport problem with additional stochastic constraints have received increasing attention, e.g. martingale optimal transport (MOT) and causal/adapted optimal transport (COT).

The aim of this lecture is to serve as an introduction into the stochastic variants of the transport problem. After a quick recall of the classical OT problem we will start investigating its martingale variant, the MOT, which is motivated by intriguing questions from robust/model independent finance.

In the second part of the lecture we will complement the worst case point of view of MOT on robust finance by a 'local' approach. This will naturally lead us to 'adapted' versions of the OT problem, the COT, which we will explore in detail. Our discussion will be guided by examples from finance and stochastic analysis.

Assessment and permitted materials

Depending on the Corona situation, either
* an open book and individual exam from home;
* an oral exam in person.

Minimum requirements and assessment criteria

Examination topics

The content of the lectures.

Reading list

Lecture Notes will be provided.

Association in the course directory

MSTV; MAMV;

Last modified: Fr 12.05.2023 00:21