Warning! The directory is not yet complete and will be amended until the beginning of the term.
250017 VO Mathematical Modeling (2017S)
Labels
Details
Language: German
Examination dates
- Wednesday 14.06.2017
- Friday 30.06.2017 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 03.07.2017
- Tuesday 11.07.2017 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Saturday 15.07.2017
- Wednesday 27.09.2017 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 16.01.2018 11:30 - 13:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 25.01.2019
Lecturers
Classes (iCal) - next class is marked with N
First lecture 3.3.17.
- Friday 03.03. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 10.03. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 17.03. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 24.03. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 31.03. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 07.04. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 28.04. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 05.05. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 12.05. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 19.05. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 26.05. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 02.06. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 09.06. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 16.06. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 23.06. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 30.06. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Introduction to mathematical modeling: dimensional analysis and scaling, stability analysis, introductory examples; discrete models in finance and population dynamics; algebraic linear systems modeling of electric and mechanical networks; ordinary differential equation models in mechanics and population dynamics; hints on partial differential equation models in physics and natural sciences.
Assessment and permitted materials
Final written exam.
Minimum requirements and assessment criteria
Modeling with algebraic equations, difference equations, and differential equations; solutions in simple situations.
Examination topics
Topics of the course.
Reading list
Christof Eck, Harald Garcke, Peter Knabner, Mathematische Modellierung, Springer-Lehrbuch, 2011Christian Schmeiser, Modellierung (Lecture Notes).Possible additional material will be distributed during the course.
Association in the course directory
WMO
Last modified: Mo 07.09.2020 15:40