Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250017 VO Mathematical Modeling (2017S)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

First lecture 3.3.17.

  • Friday 03.03. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 10.03. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 17.03. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 24.03. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 31.03. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 07.04. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 28.04. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 05.05. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 12.05. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 19.05. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 26.05. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 02.06. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 09.06. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 16.06. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 23.06. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 30.06. 08:00 - 10:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

Introduction to mathematical modeling: dimensional analysis and scaling, stability analysis, introductory examples; discrete models in finance and population dynamics; algebraic linear systems modeling of electric and mechanical networks; ordinary differential equation models in mechanics and population dynamics; hints on partial differential equation models in physics and natural sciences.

Assessment and permitted materials

Final written exam.

Minimum requirements and assessment criteria

Modeling with algebraic equations, difference equations, and differential equations; solutions in simple situations.

Examination topics

Topics of the course.

Reading list

Christof Eck, Harald Garcke, Peter Knabner, Mathematische Modellierung, Springer-Lehrbuch, 2011

Christian Schmeiser, Modellierung (Lecture Notes).

Possible additional material will be distributed during the course.

Association in the course directory

WMO

Last modified: Mo 07.09.2020 15:40