Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250018 UE Tutorials on partial differential equations (2016S)

2.00 ECTS (1.00 SWS), SPL 25 - Mathematik
Continuous assessment of course work

Summary

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Registration information is available for each group.

Groups

Group 1

max. 25 participants
Language: German
LMS: Moodle

Lecturers

Classes (iCal) - next class is marked with N

  • Friday 04.03. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 18.03. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 08.04. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 15.04. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 22.04. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 29.04. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 06.05. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 13.05. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 20.05. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 27.05. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 03.06. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 10.06. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 17.06. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 24.06. 09:45 - 10:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock

Assessment and permitted materials

The grade is made up of
- the participation in the exercise classes (presentation of the exercises at the blackboard) and
- the result of one test during the semester.

Examination topics

Content of the lecture and the exercises.

Reading list

- L. Evans, Partial Differential Equations, Graduate Studies in Mathematics 19, AMS, 2010
- W. A. Strauß, Partial Differential Equations: An Introduction, Wiley, 2008
- M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, Springer, 2004
- G. B. Folland, Introduction to Partial Differential Equations, Princeton University Press, 1995

Group 2

max. 25 participants
Language: German
LMS: Moodle

Lecturers

Classes (iCal) - next class is marked with N

  • Friday 04.03. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 18.03. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 08.04. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 15.04. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 22.04. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 29.04. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 06.05. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 13.05. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 20.05. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 27.05. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 03.06. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 10.06. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 17.06. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 24.06. 10:45 - 11:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock

Assessment and permitted materials

The grade is made up of
- the participation in the exercise classes (presentation of the exercises at the blackboard) and
- the result of one test during the semester.

Examination topics

Content of the lecture and the exercises.

Reading list

- L. Evans, Partial Differential Equations, Graduate Studies in Mathematics 19, AMS, 2010
- W. A. Strauß, Partial Differential Equations: An Introduction, Wiley, 2008
- M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, Springer, 2004
- G. B. Folland, Introduction to Partial Differential Equations, Princeton University Press, 1995

Information

Aims, contents and method of the course

- Fundamental examples of partial differential equations (Laplace equation, heat equation, wave equation),
- nonlinear partial differential equations of first order (method of characteristics),
- Fourier transform.

Minimum requirements and assessment criteria


Association in the course directory

DGL

Last modified: Mo 07.09.2020 15:40