Universität Wien

250019 UE Tutorials on advanced analysis and differential geometry (2010W)

4.00 ECTS (2.00 SWS), SPL 25 - Mathematik
Continuous assessment of course work

Summary

1 Hofbauer
2 Haller

Registration/Deregistration

Groups

Group 1

Language: German

Lecturers

Classes (iCal) - next class is marked with N

  • Wednesday 06.10. 13:00 - 15:00 Seminarraum
  • Wednesday 13.10. 13:00 - 15:00 Seminarraum
  • Wednesday 20.10. 13:00 - 15:00 Seminarraum
  • Wednesday 27.10. 13:00 - 15:00 Seminarraum
  • Wednesday 03.11. 13:00 - 15:00 Seminarraum
  • Wednesday 10.11. 13:00 - 15:00 Seminarraum
  • Wednesday 17.11. 13:00 - 15:00 Seminarraum
  • Wednesday 24.11. 13:00 - 15:00 Seminarraum
  • Wednesday 01.12. 13:00 - 15:00 Seminarraum
  • Wednesday 15.12. 13:00 - 15:00 Seminarraum
  • Wednesday 12.01. 13:00 - 15:00 Seminarraum
  • Wednesday 19.01. 13:00 - 15:00 Seminarraum
  • Wednesday 26.01. 13:00 - 15:00 Seminarraum

Group 2

Language: German

Lecturers

Classes (iCal) - next class is marked with N

  • Thursday 07.10. 10:15 - 11:45 Seminarraum 2A310 3.OG UZA II
  • Thursday 14.10. 10:15 - 11:45 Seminarraum 2A310 3.OG UZA II
  • Thursday 21.10. 10:15 - 11:45 Seminarraum 2A310 3.OG UZA II
  • Thursday 28.10. 10:15 - 11:45 Seminarraum 2A310 3.OG UZA II
  • Thursday 04.11. 10:15 - 11:45 Seminarraum 2A310 3.OG UZA II
  • Thursday 11.11. 10:15 - 11:45 Seminarraum 2A310 3.OG UZA II
  • Thursday 18.11. 10:15 - 11:45 Seminarraum 2A310 3.OG UZA II
  • Thursday 25.11. 10:15 - 11:45 Seminarraum 2A310 3.OG UZA II
  • Thursday 02.12. 10:15 - 11:45 Seminarraum 2A310 3.OG UZA II
  • Thursday 09.12. 10:15 - 11:45 Seminarraum 2A310 3.OG UZA II
  • Thursday 16.12. 10:15 - 11:45 Seminarraum 2A310 3.OG UZA II
  • Thursday 13.01. 10:15 - 11:45 Seminarraum 2A310 3.OG UZA II
  • Thursday 20.01. 10:15 - 11:45 Seminarraum 2A310 3.OG UZA II
  • Thursday 27.01. 10:15 - 11:45 Seminarraum 2A310 3.OG UZA II

Information

Aims, contents and method of the course

Discussion of exercises related to the lecture course "Advanced Analysis and Differential Geometry."

Assessment and permitted materials

Quality of presentations and degree of participation

Minimum requirements and assessment criteria

To acquire a deeper understanding for the material covered in the lecture course.To be able to apply the concepts and results from the lecture course to concrete examples, and to present the solutions in an comprehensible manner.

Examination topics

Presentations on the blackboard, discussions

Reading list


Association in the course directory

HAN

Last modified: We 06.04.2022 00:24