Warning! The directory is not yet complete and will be amended until the beginning of the term.
250019 VO Complex analysis (2017W)
Labels
Details
Language: German
Examination dates
- Monday 05.02.2018 13:15 - 16:15 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 23.03.2018 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 25.05.2018 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 30.09.2019
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 03.10. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 10.10. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 17.10. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 24.10. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 31.10. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 07.11. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 14.11. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 21.11. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 28.11. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 05.12. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 12.12. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 09.01. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 16.01. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 23.01. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 30.01. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
complex numbers, holomorphic functions, the Cauchy-Riemann equations, power series, contour integrals, winding numbers, Cauchy's theorem and the Cauchy integral formula, expansion of holomorphic functions in power series, the Identity Theorem, zeros and singularities, the Mean Value Theorem and the Maximum Principle, Cauchy estimates and Liouville's Theorem
Assessment and permitted materials
written examination
Minimum requirements and assessment criteria
Examination topics
Reading list
Friedrich Haslinger, Komplexe Analysis, Skriptum, http://www.mat.univie.ac.at/%7Ehas/complex/scriptumII.pdfSerge Lang, Complex Analysis, Springer Verlag, 1999.
Association in the course directory
KAN, UFMA09
Last modified: Mo 07.09.2020 15:40