Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250019 VO Complex analysis (2021W)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik
REMOTE

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 04.10. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 11.10. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 18.10. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 25.10. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 08.11. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 15.11. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 22.11. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 29.11. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 06.12. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 13.12. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 10.01. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 17.01. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 24.01. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 31.01. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

complex numbers, holomorphic functions, the Cauchy-Riemann equations, power series, contour integrals, winding numbers, Cauchy's theorem and the Cauchy integral formula, expansion of holomorphic functions in power series, the Identity Theorem, zeros and singularities, the Mean Value Theorem and the Maximum Principle, Cauchy estimates and Liouville's Theorem, and, as far as the circumstances allow, also: Laurent series, the Residue Theorem and applications

Assessment and permitted materials

written examination, or, in case a written examination with physical presence is not possible, written online examination

Minimum requirements and assessment criteria

50% der bei der schriftlichen Prüfung erreichbaren Punkte sind für eine positive Note ausreichend.

Examination topics

Alle in der Vorlesung behandelten Inhalte.

Reading list

Die handgeschriebenen Vorlesungsnotizen werden auf Moodle zur Verfügung gestellt.

(1) F. Haslinger, Komplexe Analysis, Skriptum,
http://www.mat.univie.ac.at/%7Ehas/complex/scriptumII.pdf

(2) W. Rudin, Real and complex analysis, McGraw-Hill Book Co., 1987.

(3) S. Lang, Complex Analysis, Springer Verlag, 1999.

(4) R. Remmert and G. Schumacher, Funktionentheorie 1, Springer 2002.

(5) I. Stewart, D. Tall, Complex Analysis, Cambridge University Press, 2004.

Association in the course directory

KAN, UFMAMA02

Last modified: Sa 30.11.2024 00:15