Warning! The directory is not yet complete and will be amended until the beginning of the term.
250019 VO Complex analysis (2021W)
Labels
REMOTE
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: German
Examination dates
- Monday 07.02.2022 11:00 - 13:00 Digital
- Tuesday 26.04.2022 09:45 - 11:45 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Monday 04.07.2022 13:15 - 14:45 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 19.09.2022 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 07.02.2023
- Tuesday 29.10.2024
Lecturers
Classes (iCal) - next class is marked with N
-
Monday
04.10.
11:30 - 13:00
Digital
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
11.10.
11:30 - 13:00
Digital
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
18.10.
11:30 - 13:00
Digital
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
25.10.
11:30 - 13:00
Digital
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
08.11.
11:30 - 13:00
Digital
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
15.11.
11:30 - 13:00
Digital
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
22.11.
11:30 - 13:00
Digital
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
29.11.
11:30 - 13:00
Digital
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
06.12.
11:30 - 13:00
Digital
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
13.12.
11:30 - 13:00
Digital
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
10.01.
11:30 - 13:00
Digital
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
17.01.
11:30 - 13:00
Digital
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
24.01.
11:30 - 13:00
Digital
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
31.01.
11:30 - 13:00
Digital
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
complex numbers, holomorphic functions, the Cauchy-Riemann equations, power series, contour integrals, winding numbers, Cauchy's theorem and the Cauchy integral formula, expansion of holomorphic functions in power series, the Identity Theorem, zeros and singularities, the Mean Value Theorem and the Maximum Principle, Cauchy estimates and Liouville's Theorem, and, as far as the circumstances allow, also: Laurent series, the Residue Theorem and applications
Assessment and permitted materials
written examination, or, in case a written examination with physical presence is not possible, written online examination
Minimum requirements and assessment criteria
50% der bei der schriftlichen Prüfung erreichbaren Punkte sind für eine positive Note ausreichend.
Examination topics
Alle in der Vorlesung behandelten Inhalte.
Reading list
Die handgeschriebenen Vorlesungsnotizen werden auf Moodle zur Verfügung gestellt.(1) F. Haslinger, Komplexe Analysis, Skriptum,
http://www.mat.univie.ac.at/%7Ehas/complex/scriptumII.pdf(2) W. Rudin, Real and complex analysis, McGraw-Hill Book Co., 1987.(3) S. Lang, Complex Analysis, Springer Verlag, 1999.(4) R. Remmert and G. Schumacher, Funktionentheorie 1, Springer 2002.(5) I. Stewart, D. Tall, Complex Analysis, Cambridge University Press, 2004.
http://www.mat.univie.ac.at/%7Ehas/complex/scriptumII.pdf(2) W. Rudin, Real and complex analysis, McGraw-Hill Book Co., 1987.(3) S. Lang, Complex Analysis, Springer Verlag, 1999.(4) R. Remmert and G. Schumacher, Funktionentheorie 1, Springer 2002.(5) I. Stewart, D. Tall, Complex Analysis, Cambridge University Press, 2004.
Association in the course directory
KAN, UFMAMA02
Last modified: Sa 30.11.2024 00:15