Warning! The directory is not yet complete and will be amended until the beginning of the term.
250022 VO Differential Equations and Modelling (2023W)
Labels
ON-SITE
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: German
Examination dates
- Tuesday 30.01.2024 11:00 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 28.02.2024 11:30 - 13:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 22.05.2024 09:45 - 11:45 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
- Wednesday 25.09.2024 13:15 - 15:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 03.10. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 05.10. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 10.10. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 12.10. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 17.10. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 19.10. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 24.10. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 31.10. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 07.11. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 09.11. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 14.11. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 16.11. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 21.11. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 23.11. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 28.11. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 30.11. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 05.12. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 07.12. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 12.12. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 14.12. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 09.01. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 11.01. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 16.01. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 18.01. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 23.01. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 25.01. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Aim of this course is to acquire basis knowledge about ordinary differential equations, methods to solve them and their applications. The teaching method is by lectures, based on the textbook (the link will be made available on Moodle). There are exercise classes associated with the course (see the appropriate course, 250023 PS)
Assessment and permitted materials
The course will be evaluated by a written exam.
Pocket calculator (not programmable) is allowed during the exam. For class test in the exercise class, this will be determined by the Exercise class leaders.
Pocket calculator (not programmable) is allowed during the exam. For class test in the exercise class, this will be determined by the Exercise class leaders.
Minimum requirements and assessment criteria
Positive result at the written exam
Examination topics
The themes of this course include:
- Various methods of solving ODEs;
- Solution of systems of linear differential equations;
- Existence and uniqueness theorems of solutions of ODEs;
- Interpretation of ODEs as dynamical systems;
- Boundary problems;
- Sturm Liouville equations;
- Applications in physics, biology, chemistry, mechanics, economics, etc.See Syllabus of Prof. Teschl (available online)
- Various methods of solving ODEs;
- Solution of systems of linear differential equations;
- Existence and uniqueness theorems of solutions of ODEs;
- Interpretation of ODEs as dynamical systems;
- Boundary problems;
- Sturm Liouville equations;
- Applications in physics, biology, chemistry, mechanics, economics, etc.See Syllabus of Prof. Teschl (available online)
Reading list
G. Teschl, Ordinary Differential Equation, Graduate Studies in Mathematics Vol. 140, Amer. Math. Soc. 2012 (available online)
K. Jänich, Analysis für Physiker und Ingenieure. Second edition. Springer-Lehrbuch. Springer-Verlag, Berlin, 1990.
K. Jänich, Analysis für Physiker und Ingenieure. Second edition. Springer-Lehrbuch. Springer-Verlag, Berlin, 1990.
Association in the course directory
DGM
Last modified: Th 26.09.2024 10:26