Warning! The directory is not yet complete and will be amended until the beginning of the term.
250025 VO Introduction to topology (2019W)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: German
Examination dates
-
Friday
31.01.2020
15:00 - 16:30
Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock - Monday 02.03.2020 13:15 - 14:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 07.05.2020
- Thursday 18.06.2020 15:00 - 16:30 Digital
- Thursday 08.10.2020
Lecturers
Classes (iCal) - next class is marked with N
Das 3. Kolloquium am 30.04 wird auf den 07.05.2020 verschoben und findet als digitale offline Prüfung statt, d.h. die Angaben können über moodle heruntergeladen werden und werden zum Prüfungsende auf moodle hochgeladen. Nähere Informationen zum 4. Kolloquium werden noch bekannt gegeben.
- Thursday 03.10. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 10.10. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 17.10. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 24.10. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 31.10. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 07.11. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 14.11. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 21.11. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 28.11. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 05.12. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 12.12. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 09.01. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 16.01. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 23.01. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 30.01. 11:30 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Written exam. No aids are permitted.
Minimum requirements and assessment criteria
50 percent of the maximum score of the written exam
Examination topics
Content of the course
Reading list
v. Querenburg: Mengentheoretische TopologieJänich: TopologieDixmier: General TopologyLaures, Szymik: Grundkurs TopologieBartsch: Allgemeine TopologieBourbaki: TopologySchubert: Topologie
Association in the course directory
TFA
Last modified: Fr 12.05.2023 00:21
examines the properties of these notions in great generality. To this end it axiomatizes the concept of neighbourhood (or equivalently that of an open set) in the central notion of topological space. Only building on this it is possible
to define concepts like convergence, continuity, connectedness and compactness and to examine their properties. Due to this great generality of its notions topology
has applications to a wide area of mathematics and in particular then makes possible to argue using geometric intuition (based on the notion of neighbourhood). Topology thus has become a foundational theory of mathematics.Content of the course: Departing from the courses Analysis 1 and 2 where topological notions appear for the first time we will introduce general topological spaces and study the basic topological
concepts convergence, continuity, compactness, connectedness and also techniques for constructing topological spaces.Aims: Knowledge and understanding of basic notions and methods of topology and their properties.
Understanding of applicability of abstract notions of topology e.g. in analysis.