Warning! The directory is not yet complete and will be amended until the beginning of the term.
250025 VO Introduction to topology (2021W)
Labels
MIXED
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: German
Examination dates
- Wednesday 09.02.2022 09:45 - 13:00 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 08.04.2022 09:45 - 11:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 24.06.2022 09:45 - 11:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Lecturers
Classes (iCal) - next class is marked with N
- Monday 04.10. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 11.10. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 18.10. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 25.10. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 08.11. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 15.11. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 22.11. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 29.11. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 06.12. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 13.12. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 10.01. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 17.01. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 24.01. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 31.01. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Lecture notes available at https://www.mat.univie.ac.at/~bruin/GBTopologie.pdf
Assessment and permitted materials
Written exam, 90 minutes (in case an in-class exam is impossible because of Corona-measures, I can choose a different format).
The weighing for each item will be indicated
The weighing for each item will be indicated
Minimum requirements and assessment criteria
To pass this course, at least half of the points of the written exam need to achieved. The weighing for each item will be indicated
Examination topics
All contents of the lecture according to the class-notes https://www.mat.univie.ac.at/~bruin/GBTopologie.pdf
except for the following: Proof of 2.3, Proof of 2.7; 5.17, 5.19-29; 6.6; Part of proof of 6.9. from 1, Proof of 6.10; Part of proof (iii)<->(iv) of 7.3; Proof of 7.10; Proof of 8.5, Proof of Thm. in 8.7, Proof of 1 & 2 in 8.9; 8.10.
except for the following: Proof of 2.3, Proof of 2.7; 5.17, 5.19-29; 6.6; Part of proof of 6.9. from 1, Proof of 6.10; Part of proof (iii)<->(iv) of 7.3; Proof of 7.10; Proof of 8.5, Proof of Thm. in 8.7, Proof of 1 & 2 in 8.9; 8.10.
Reading list
A. Cap: Grundbegriffe der Topologie. Vorlesungsskriptum. Fakultät für Mathematik, Universität Wien, WS 2018/19. http://www.mat.univie.ac.at/~cap/files/Topologie.pdf
J. Cigler und H.-C. Reichel: Topologie. Bibliographisches Institut, 2. Auflage 1987.
J.B. Conway: A Course in Point Set Topology, Springer 2014.
K. Jänich: Topologie. Springer, 8. Auflage 2005.
L.A. Steen und J.A.. Seebach: Counterexamples in Topology. Springer, second edition 1978.
B. von Querenburg: Mengentheoretische Topologie. Springer, 3. Auflage 2001.
S. Waldmann: Topology. An Introduction. Springer 2014.
S. Willard: General Topology. Addison-Wesley 1970.
J. Cigler und H.-C. Reichel: Topologie. Bibliographisches Institut, 2. Auflage 1987.
J.B. Conway: A Course in Point Set Topology, Springer 2014.
K. Jänich: Topologie. Springer, 8. Auflage 2005.
L.A. Steen und J.A.. Seebach: Counterexamples in Topology. Springer, second edition 1978.
B. von Querenburg: Mengentheoretische Topologie. Springer, 3. Auflage 2001.
S. Waldmann: Topology. An Introduction. Springer 2014.
S. Willard: General Topology. Addison-Wesley 1970.
Association in the course directory
TFA
Last modified: Mo 11.04.2022 09:09