Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250025 VO Introduction to topology (2021W)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik
MIXED

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 04.10. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 11.10. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 18.10. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 25.10. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 08.11. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 15.11. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 22.11. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 29.11. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 06.12. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 13.12. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 10.01. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 17.01. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 24.01. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 31.01. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

Assessment and permitted materials

Written exam, 90 minutes (in case an in-class exam is impossible because of Corona-measures, I can choose a different format).
The weighing for each item will be indicated

Minimum requirements and assessment criteria

To pass this course, at least half of the points of the written exam need to achieved. The weighing for each item will be indicated

Examination topics

All contents of the lecture according to the class-notes https://www.mat.univie.ac.at/~bruin/GBTopologie.pdf
except for the following: Proof of 2.3, Proof of 2.7; 5.17, 5.19-29; 6.6; Part of proof of 6.9. from 1, Proof of 6.10; Part of proof (iii)<->(iv) of 7.3; Proof of 7.10; Proof of 8.5, Proof of Thm. in 8.7, Proof of 1 & 2 in 8.9; 8.10.

Reading list

A. Cap: Grundbegriffe der Topologie. Vorlesungsskriptum. Fakultät für Mathematik, Universität Wien, WS 2018/19. http://www.mat.univie.ac.at/~cap/files/Topologie.pdf
J. Cigler und H.-C. Reichel: Topologie. Bibliographisches Institut, 2. Auflage 1987.
J.B. Conway: A Course in Point Set Topology, Springer 2014.
K. Jänich: Topologie. Springer, 8. Auflage 2005.
L.A. Steen und J.A.. Seebach: Counterexamples in Topology. Springer, second edition 1978.
B. von Querenburg: Mengentheoretische Topologie. Springer, 3. Auflage 2001.
S. Waldmann: Topology. An Introduction. Springer 2014.
S. Willard: General Topology. Addison-Wesley 1970.

Association in the course directory

TFA

Last modified: Mo 11.04.2022 09:09