Warning! The directory is not yet complete and will be amended until the beginning of the term.
250026 UE Tutorials "Introduction to topology" (2021W)
Continuous assessment of course work
Labels
REMOTE
Summary
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 13.09.2021 00:00 to Mo 27.09.2021 23:59
- Deregistration possible until Su 31.10.2021 23:59
Registration information is available for each group.
Groups
Group 1
max. 25 participants
Language: German
LMS: Moodle
Lecturers
Classes (iCal) - next class is marked with N
No proseminar in the first Octoberweek
- Monday 04.10. 08:00 - 08:45 Digital
- Monday 11.10. 08:00 - 08:45 Digital
- Monday 18.10. 08:00 - 08:45 Digital
- Monday 25.10. 08:00 - 08:45 Digital
- Monday 08.11. 08:00 - 08:45 Digital
- Monday 15.11. 08:00 - 08:45 Digital
- Monday 22.11. 08:00 - 08:45 Digital
- Monday 29.11. 08:00 - 08:45 Digital
- Monday 06.12. 08:00 - 08:45 Digital
- Monday 13.12. 08:00 - 08:45 Digital
- Monday 10.01. 08:00 - 08:45 Digital
- Monday 17.01. 08:00 - 08:45 Digital
- Monday 24.01. 08:00 - 08:45 Digital
- Monday 31.01. 08:00 - 08:45 Digital
Group 2
max. 25 participants
Language: German
LMS: Moodle
Lecturers
Classes (iCal) - next class is marked with N
No proseminar in the first Octoberweek
- Thursday 07.10. 08:00 - 08:45 Digital
- Thursday 14.10. 08:00 - 08:45 Digital
- Thursday 21.10. 08:00 - 08:45 Digital
- Thursday 28.10. 08:00 - 08:45 Digital
- Thursday 04.11. 08:00 - 08:45 Digital
- Thursday 11.11. 08:00 - 08:45 Digital
- Thursday 18.11. 08:00 - 08:45 Digital
- Thursday 25.11. 08:00 - 08:45 Digital
- Thursday 02.12. 08:00 - 08:45 Digital
- Thursday 09.12. 08:00 - 08:45 Digital
- Thursday 16.12. 08:00 - 08:45 Digital
- Thursday 13.01. 08:00 - 08:45 Digital
- Thursday 20.01. 08:00 - 08:45 Digital
- Thursday 27.01. 08:00 - 08:45 Digital
Group 3
max. 25 participants
Language: English
LMS: Moodle
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 06.10. 08:00 - 08:45 Digital
- Wednesday 13.10. 08:00 - 08:45 Digital
- Wednesday 20.10. 08:00 - 08:45 Digital
- Wednesday 27.10. 08:00 - 08:45 Digital
- Wednesday 03.11. 08:00 - 08:45 Digital
- Wednesday 10.11. 08:00 - 08:45 Digital
- Wednesday 17.11. 08:00 - 08:45 Digital
- Wednesday 24.11. 08:00 - 08:45 Digital
- Wednesday 01.12. 08:00 - 08:45 Digital
- Wednesday 15.12. 08:00 - 08:45 Digital
- Wednesday 12.01. 08:00 - 08:45 Digital
- Wednesday 19.01. 08:00 - 08:45 Digital
- Wednesday 26.01. 08:00 - 08:45 Digital
Group 4
max. 25 participants
Language: English
LMS: Moodle
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 05.10. 13:30 - 14:15 Digital
- Tuesday 12.10. 13:30 - 14:15 Digital
- Tuesday 19.10. 13:30 - 14:15 Digital
- Tuesday 09.11. 13:30 - 14:15 Digital
- Tuesday 16.11. 13:30 - 14:15 Digital
- Tuesday 23.11. 13:30 - 14:15 Digital
- Tuesday 30.11. 13:30 - 14:15 Digital
- Tuesday 07.12. 13:30 - 14:15 Digital
- Tuesday 14.12. 13:30 - 14:15 Digital
- Tuesday 11.01. 13:30 - 14:15 Digital
- Tuesday 18.01. 13:30 - 14:15 Digital
- Tuesday 25.01. 13:30 - 14:15 Digital
Information
Aims, contents and method of the course
Assessment and permitted materials
There will be a Moodle list to check your solved exercises until about 36 hours before the start of the proseminar. For each question, a 10-minute presentation will be expected at the blackboard (or online if Corona-measure require this).
Minimum requirements and assessment criteria
To pass the proseminar the following two criteria have to be met:
(a) At least 2/3 of the Exercises checked in Moodle thoughout the semester.
(b) at least one positive presentation of an Exercise (we try to give each students at least two opportunities to present).
(a) At least 2/3 of the Exercises checked in Moodle thoughout the semester.
(b) at least one positive presentation of an Exercise (we try to give each students at least two opportunities to present).
Examination topics
All contents of the lecture according to the class-notes https://www.mat.univie.ac.at/~bruin/GBTopologie.pdf
except for the following: Proof of 2.3, Proof of 2.7; 5.17, 5.19-29; 6.6; Part of proof of 6.9. from 1, Proof of 6.10; Part of proof (iii)<->(iv) of 7.3; Proof of 7.10; Proof of 8.5, Proof of Thm. in 8.7, Proof of 1 & 2 in 8.9; 8.10.
except for the following: Proof of 2.3, Proof of 2.7; 5.17, 5.19-29; 6.6; Part of proof of 6.9. from 1, Proof of 6.10; Part of proof (iii)<->(iv) of 7.3; Proof of 7.10; Proof of 8.5, Proof of Thm. in 8.7, Proof of 1 & 2 in 8.9; 8.10.
Reading list
A. Cap: Grundbegriffe der Topologie. Vorlesungsskriptum. Fakultät für Mathematik, Universität Wien, WS 2018/19. http://www.mat.univie.ac.at/~cap/files/Topologie.pdf
J. Cigler und H.-C. Reichel: Topologie. Bibliographisches Institut, 2. Auflage 1987.
J.B. Conway: A Course in Point Set Topology, Springer 2014.
K. Jänich: Topologie. Springer, 8. Auflage 2005.
L.A. Steen und J.A.. Seebach: Counterexamples in Topology. Springer, second edition 1978.
B. von Querenburg: Mengentheoretische Topologie. Springer, 3. Auflage 2001.
S. Waldmann: Topology. An Introduction. Springer 2014.
S. Willard: General Topology. Addison-Wesley 1970.
J. Cigler und H.-C. Reichel: Topologie. Bibliographisches Institut, 2. Auflage 1987.
J.B. Conway: A Course in Point Set Topology, Springer 2014.
K. Jänich: Topologie. Springer, 8. Auflage 2005.
L.A. Steen und J.A.. Seebach: Counterexamples in Topology. Springer, second edition 1978.
B. von Querenburg: Mengentheoretische Topologie. Springer, 3. Auflage 2001.
S. Waldmann: Topology. An Introduction. Springer 2014.
S. Willard: General Topology. Addison-Wesley 1970.
Association in the course directory
TFA
Last modified: Fr 12.05.2023 00:21
Exercise sheets will be posted