Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250027 VO Combinatorics (2009S)

6.00 ECTS (4.00 SWS), SPL 25 - Mathematik

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 02.03. 11:00 - 13:00 Seminarraum
  • Tuesday 03.03. 11:00 - 13:00 Seminarraum
  • Monday 09.03. 11:00 - 13:00 Seminarraum
  • Tuesday 10.03. 11:00 - 13:00 Seminarraum
  • Monday 16.03. 11:00 - 13:00 Seminarraum
  • Tuesday 17.03. 11:00 - 13:00 Seminarraum
  • Monday 23.03. 11:00 - 13:00 Seminarraum
  • Tuesday 24.03. 11:00 - 13:00 Seminarraum
  • Monday 30.03. 11:00 - 13:00 Seminarraum
  • Tuesday 31.03. 11:00 - 13:00 Seminarraum
  • Monday 20.04. 11:00 - 13:00 Seminarraum
  • Tuesday 21.04. 11:00 - 13:00 Seminarraum
  • Monday 27.04. 11:00 - 13:00 Seminarraum
  • Tuesday 28.04. 11:00 - 13:00 Seminarraum
  • Monday 04.05. 11:00 - 13:00 Seminarraum
  • Tuesday 05.05. 11:00 - 13:00 Seminarraum
  • Monday 11.05. 11:00 - 13:00 Seminarraum
  • Tuesday 12.05. 11:00 - 13:00 Seminarraum
  • Monday 18.05. 11:00 - 13:00 Seminarraum
  • Tuesday 19.05. 11:00 - 13:00 Seminarraum
  • Monday 25.05. 11:00 - 13:00 Seminarraum
  • Tuesday 26.05. 11:00 - 13:00 Seminarraum
  • Monday 08.06. 11:00 - 13:00 Seminarraum
  • Tuesday 09.06. 11:00 - 13:00 Seminarraum
  • Monday 15.06. 11:00 - 13:00 Seminarraum
  • Tuesday 16.06. 11:00 - 13:00 Seminarraum
  • Monday 22.06. 11:00 - 13:00 Seminarraum
  • Tuesday 23.06. 11:00 - 13:00 Seminarraum
  • Monday 29.06. 11:00 - 13:00 Seminarraum
  • Tuesday 30.06. 11:00 - 13:00 Seminarraum

Information

Aims, contents and method of the course

Combinatorics, in its simplest form, deals with the enumeration of elements of a finite set. The most frequent basic combinatorial objects
are permutations, rearrangements, lattice paths, trees and graphs. The appeal of combinatorics comes from the fact that there is no uniform approach for the treatment of the different problems, but many different methods, each of which providing a conceptual approach to a particular type of problem, respectively shedding light on these problems from different angles. The fact that there are no limitations on imagination in combinatorics has given a boost to this area in the past. In particular, the interrelations to other areas, such as theory of finite groups, representation theory, commutative algebra, algebraic geometry, computer science, and statistical physics, became more and more
important.

This course will build on the material of the course "Diskrete Mathematik". Some topics from there will be treated here in a more profound manner, and there will be new topics, to be precise:

1. Combinatorial structures and their generating functions
2. Pölya theory and the enumeration of objects with symmetries
3. Methods for asymptotic enumeration
4. Combinatorial theory of partielly ordered sets

Assessment and permitted materials

Minimum requirements and assessment criteria

Examination topics

Reading list

Empfehlenswerte Bücher sind:
P. Flajolet, R. Sedgewick, "Analytic Combinatorics", Cambridge University Press, 2009.
P. J. Cameron, "Combinatorics", Cambridge University Press, 1994.
R. P. Stanley, "Enumerative Combinatorics", Vol. 1, Wadsworth \& Brooks/Cole, 1986.
D. Stanton und D. White, "Constructive Combinatorics", Springer-Verlag, 1986.
Es existiert auch eine Vorlesungsmitschrift durch Christoph Marx
der Vorlesung "Kombinatorik", die Bernhard Krön im Vorjahr gehalten
hat, die grosse Überschneidungen ausweisen wird.

Association in the course directory

MALK

Last modified: Mo 07.09.2020 15:40