Warning! The directory is not yet complete and will be amended until the beginning of the term.
250030 VO Homological Algebra (2022S)
Labels
MIXED
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 02.03. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 07.03. 12:30 - 13:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 09.03. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 14.03. 12:30 - 13:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 16.03. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 21.03. 12:30 - 13:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 23.03. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 28.03. 12:30 - 13:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 30.03. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 04.04. 12:30 - 13:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 06.04. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 25.04. 12:30 - 13:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 27.04. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 02.05. 12:30 - 13:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 04.05. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 09.05. 12:30 - 13:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 11.05. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 16.05. 12:30 - 13:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 18.05. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 23.05. 12:30 - 13:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 25.05. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 30.05. 12:30 - 13:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 01.06. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 08.06. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 13.06. 12:30 - 13:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 15.06. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 20.06. 12:30 - 13:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 22.06. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 27.06. 12:30 - 13:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 29.06. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Written exam after the end of the lecture.
Minimum requirements and assessment criteria
50 % of the points for the written exam.
Examination topics
All topics covered in the lecture.
Reading list
[1] K. S. Brown: Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, 1994.H. Cartan, S. Eilenberg: Homological algebra. Princeton University Press, Princeton, NJ, 1999.[2] I. Gelfand, Y.I. Manin: Methods of homological algebra, Springer, 2003.[3] P. Hilton; U. Stammbach: A course in homological algebra, Graduate Texts in Mathematics, Springer-Verlag,
New York, 1997.[4] C.A.Weibel: An introduction to homological algebra, Cambridge, 1994.
New York, 1997.[4] C.A.Weibel: An introduction to homological algebra, Cambridge, 1994.
Association in the course directory
MALV
Last modified: Fr 01.07.2022 07:48
as it is needed for algebraic topology, commutative algebra, group theory
and number theory. The following topics are planned:
Module theory (free, projective, flat, divisible and injective modules),
categories and functors (in particular abelian categories), resolutions and
derived functors (projective and injective resolutions, homology, homotopy,
ext-functor, tor-functor), Group homology and cohomology, spectral sequences
(in particular the Hochschild-Lyndon-Serre spectral sequence), and
triangulated categories and derived categories.