Warning! The directory is not yet complete and will be amended until the beginning of the term.
250034 VO Selected topics in Applied mathematic (Nonlinear Schrödinger equations) (2011S)
Labels
Vorbesprechung am Donnerstag, 3. März 2011
Erster Termin am Donnerstag, 10. März 2011
Termine: Mi, Do 16.30 - 17.50 Uhr, Seminarraum C 714 (UZA 4)
Erster Termin am Donnerstag, 10. März 2011
Termine: Mi, Do 16.30 - 17.50 Uhr, Seminarraum C 714 (UZA 4)
Details
Language: German
Examination dates
Lecturers
Classes
Currently no class schedule is known.
Information
Aims, contents and method of the course
Assessment and permitted materials
oral exam
Minimum requirements and assessment criteria
Einführung in ein sehr aktives Forschungsfeld aus den Gebiet
Differentialgleichungen und einige der modernen Methoden. Diplom- und
Doktorarbeiten in diesem Gebiet sind möglich, mit Projektfinanzierung.
Differentialgleichungen und einige der modernen Methoden. Diplom- und
Doktorarbeiten in diesem Gebiet sind möglich, mit Projektfinanzierung.
Examination topics
Introduction to a very active field of PDE research and to some of the modern methods. Both masters thesis and PhD thesis in the field are
possible, funded by projects.
possible, funded by projects.
Reading list
Mauser, N.J. and Stimming, H.P. "Nonlinear Schrödinger equations", lecture
notes, 2011Sulem, P.L., Sulem, C.: "The Nonlinear Schrödinger Equation, Self-Focusing
and Wave Collapse", Applied Math. Sciences 139, Springer N.Y. 1999Cazenave, Th.:``Semilinear Schroedinger equations'', Courant Lecture Notes
10, AMS, Providence Rhode Island 2003.Bourgain, J.: ``The nonlinear Schrödinger equation'', Colloqium
Publications
Vol. 46, AMS, Providence R.I. 1999Ginibre, J.: ``An Introduction to Nonlinear Schroedinger equations'',
Hokkaido Univ. Technical Report, Series in Math. 43 (1996), pp. 80-128.
notes, 2011Sulem, P.L., Sulem, C.: "The Nonlinear Schrödinger Equation, Self-Focusing
and Wave Collapse", Applied Math. Sciences 139, Springer N.Y. 1999Cazenave, Th.:``Semilinear Schroedinger equations'', Courant Lecture Notes
10, AMS, Providence Rhode Island 2003.Bourgain, J.: ``The nonlinear Schrödinger equation'', Colloqium
Publications
Vol. 46, AMS, Providence R.I. 1999Ginibre, J.: ``An Introduction to Nonlinear Schroedinger equations'',
Hokkaido Univ. Technical Report, Series in Math. 43 (1996), pp. 80-128.
Association in the course directory
MANV
Last modified: Tu 03.08.2021 00:23
nonlinearity, Scattering, Blow-up, Asymptotic results for the semi-classical limit. Modeling: Motivation / Derivation of NLS models in Quantum dynamics
incl. Time Dependent Density Functional Theory and Bose Einstein
Condensates, NLS models in Nonlinear Optics, Numerics: methods: Spectral methods, finite difference and Relaxation schemes, Validation of Simulation results