Warning! The directory is not yet complete and will be amended until the beginning of the term.
250038 VO Algebra for Secondary School Teacher Accreditation Programme (2014S)
Labels
further information at http://www.mat.univie.ac.at/~schlosse/courses/AlgLAK/AlgLAK.html
Details
Language: German
Examination dates
- Tuesday 15.07.2014
- Wednesday 16.07.2014
- Wednesday 23.07.2014
- Friday 08.08.2014
- Tuesday 26.08.2014
- Tuesday 07.10.2014
- Thursday 16.10.2014
- Friday 05.12.2014
- Wednesday 10.12.2014
- Thursday 11.12.2014
- Thursday 08.01.2015
- Tuesday 20.01.2015
- Tuesday 17.02.2015
- Tuesday 24.02.2015
- Thursday 05.03.2015
- Wednesday 18.03.2015
- Thursday 19.03.2015
- Wednesday 25.03.2015
- Thursday 23.04.2015
- Monday 27.04.2015
- Wednesday 29.04.2015
- Wednesday 03.06.2015
Lecturers
Classes (iCal) - next class is marked with N
- Friday 07.03. 08:15 - 09:45 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 14.03. 08:15 - 09:45 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 21.03. 08:15 - 09:45 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 28.03. 08:15 - 09:45 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 04.04. 08:15 - 09:45 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 11.04. 08:15 - 09:45 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 02.05. 08:15 - 09:45 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 09.05. 08:15 - 09:45 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 16.05. 08:15 - 09:45 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 23.05. 08:15 - 09:45 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 30.05. 08:15 - 09:45 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 06.06. 08:15 - 09:45 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 13.06. 08:15 - 09:45 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 20.06. 08:15 - 09:45 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 27.06. 08:15 - 09:45 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
Information
Aims, contents and method of the course
Compass and straightedge constructions, fundamental theorem of algebra, resolution of algebraic equations, commutative rings with unit element, finitely generated abelian groups, finite fields, introduction to group theory.
Assessment and permitted materials
oral exam after the end of the course
Minimum requirements and assessment criteria
Aquirement and compehension of important basic notions of algebra
Examination topics
classical lecture course
Reading list
Johann Cigler, Körper - Ringe - Gleichungen, Spektrum Akademischer Verlag, 1995.
Association in the course directory
LAM
Last modified: Mo 07.09.2020 15:40