Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250039 VO Convex Analysis (2021S)

6.00 ECTS (4.00 SWS), SPL 25 - Mathematik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 01.03. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 02.03. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 08.03. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 09.03. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 15.03. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 16.03. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 22.03. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 23.03. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 12.04. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 13.04. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 19.04. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 20.04. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 26.04. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 27.04. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 03.05. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 04.05. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 10.05. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 11.05. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 17.05. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 18.05. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 31.05. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 01.06. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 07.06. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 08.06. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 14.06. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 15.06. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 21.06. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 22.06. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 28.06. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 29.06. 09:45 - 11:15 Digital
    Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

The main goal of this lecture is to give an easy access to the most fundamental parts of convex analysis and monotone operator theory.
Contents:
- convex sets and convex functions
- topological properties of convex functions
- conjugate functions and convex subdifferential
- conjugate duality theory
- maximally monotone operators

Assessment and permitted materials

Oral exam.

Minimum requirements and assessment criteria

Examination topics

Reading list

H.H. Bauschke, P.L. Combettes - Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer-Verlag New York Dordrecht Heidelberg London, 2011

J.M. Borwein, J.D. Vanderweff - Convex Functions, Cambridge University Press, 2010

R.I. Boţ - Conjugate Duality in Convex Optimization, Lecture Notes in Economics and Mathematical Systems, Vol. 637, Springer-Verlag Berlin Heidelberg, 2010

W. Rudin - Functional Analysis, McGraw-Hill, 1973

S. Simons - From Hahn-Banach to Monotonicity, Lecture Notes in Mathematics, Vol. 1693, Springer-Verlag New York, 2008

C. Zãlinescu - Convex Analysis in General Vector Spaces, World Scientific, River Side, 2002

Association in the course directory

MAMV; MANV;

Last modified: Fr 12.05.2023 00:21