Warning! The directory is not yet complete and will be amended until the beginning of the term.
250039 VO Convex Analysis (2021S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Friday 16.07.2021
- Monday 26.07.2021
- Monday 06.09.2021
- Thursday 04.11.2021
- Thursday 03.03.2022
- Thursday 10.03.2022
- Friday 03.02.2023
Lecturers
Classes (iCal) - next class is marked with N
-
Monday
01.03.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
02.03.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
08.03.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
09.03.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
15.03.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
16.03.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
22.03.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
23.03.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
12.04.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
13.04.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
19.04.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
20.04.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
26.04.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
27.04.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
03.05.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
04.05.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
10.05.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
11.05.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
17.05.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
18.05.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
31.05.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
01.06.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
07.06.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
08.06.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
14.06.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
15.06.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
21.06.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
22.06.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
28.06.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
29.06.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral exam.
Minimum requirements and assessment criteria
Examination topics
Reading list
H.H. Bauschke, P.L. Combettes - Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer-Verlag New York Dordrecht Heidelberg London, 2011J.M. Borwein, J.D. Vanderweff - Convex Functions, Cambridge University Press, 2010R.I. Boţ - Conjugate Duality in Convex Optimization, Lecture Notes in Economics and Mathematical Systems, Vol. 637, Springer-Verlag Berlin Heidelberg, 2010W. Rudin - Functional Analysis, McGraw-Hill, 1973S. Simons - From Hahn-Banach to Monotonicity, Lecture Notes in Mathematics, Vol. 1693, Springer-Verlag New York, 2008C. Zãlinescu - Convex Analysis in General Vector Spaces, World Scientific, River Side, 2002
Association in the course directory
MAMV; MANV;
Last modified: Fr 12.05.2023 00:21
Contents:
- convex sets and convex functions
- topological properties of convex functions
- conjugate functions and convex subdifferential
- conjugate duality theory
- maximally monotone operators