250042 VU Mathematics of Machine Learning (2021S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Fr 26.02.2021 00:00 to We 03.03.2021 23:59
- Deregistration possible until We 30.06.2021 23:59
Details
max. 30 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
The link for the zoom-meeting of the lecture will be posted on moodle before each lecture.
-
Tuesday
02.03.
15:00 - 16:30
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Thursday
04.03.
11:30 - 13:00
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
09.03.
15:00 - 16:30
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Thursday
11.03.
11:30 - 13:00
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
16.03.
15:00 - 16:30
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Thursday
18.03.
11:30 - 13:00
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
23.03.
15:00 - 16:30
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Thursday
25.03.
11:30 - 13:00
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
13.04.
15:00 - 16:30
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Thursday
15.04.
11:30 - 13:00
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
20.04.
15:00 - 16:30
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Thursday
22.04.
11:30 - 13:00
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
27.04.
15:00 - 16:30
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Thursday
29.04.
11:30 - 13:00
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
04.05.
15:00 - 16:30
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Thursday
06.05.
11:30 - 13:00
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
11.05.
15:00 - 16:30
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
18.05.
15:00 - 16:30
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Thursday
20.05.
11:30 - 13:00
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Thursday
27.05.
11:30 - 13:00
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
01.06.
15:00 - 16:30
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
08.06.
15:00 - 16:30
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Thursday
10.06.
11:30 - 13:00
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
15.06.
15:00 - 16:30
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Thursday
17.06.
11:30 - 13:00
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
22.06.
15:00 - 16:30
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Thursday
24.06.
11:30 - 13:00
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
29.06.
15:00 - 16:30
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
During this lecture, there will be 3-4 challenges. In which you will have to solve machine learning problems. You can use any programming language you like but Python is advised.In these challenges you need to beat the base-line of an algorithm that I propose. All 3-4 challenges must be successfully performed to participate in the exam.There will be an oral exam at the end of the lecture.
Minimum requirements and assessment criteria
This is an applied math course. Therefore it will often touch on many different mathematical fields. Such as harmonic analysis, graph theory, random matrix theory, etc. students are not required to know about these issues beforehand. But a certain willingness to look up concepts from time to time is necessary.
Examination topics
Everything mentioned in the lecture.
Reading list
1. Mohri, Mehryar, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT press, 2018. \url{https://cs.nyu.edu/~mohri/mlbook/2. Shalev-Shwartz, Shai, and Shai Ben-David. Understanding machine learning: From theory to algorithms. Cambridge university press, 2014. https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/3. Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning: data mining, inference, and prediction. Springer Science \& Business Media, 2009 https://web.stanford.edu/~hastie/ElemStatLearn/
Association in the course directory
MAMV;
Last modified: Fr 12.05.2023 00:21
2. Rademacher complexity and VC dimension: generalization bounds for Rademacher, Growth function, Connection to Rademacher compl., VC dimension, VC dimension based upper bounds,
lower bounds on generalization.
3. Model Selection: Bias Variance trade-off, Structural Risk minimisation, Cross validation, regularisation
4. Support Vector Machines: generalisation bounds, margin theory/margin based generalization bounds
5. Kernel Methods: Reproducing Kernel Hilbert spaces, Representer Theorem, kernel SVM, generalisation bounds for kernel based methods
6. Clustering: k-means, Lloyds algorithm, Ncut, Cheeger cut, spectral clustering.
7. Dimensionality Reduction: PCA, diffusion maps, Johnson - Lindenstrauss)
8. Neural Networks (Mostly shallow)