Warning! The directory is not yet complete and will be amended until the beginning of the term.
250044 VO Algebraic topology 2 (2009W)
Labels
Details
Language: German
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Monday 05.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Tuesday 06.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Wednesday 07.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Thursday 08.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Monday 12.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Tuesday 13.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Wednesday 14.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Thursday 15.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Monday 19.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Tuesday 20.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Wednesday 21.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Thursday 22.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Tuesday 27.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Wednesday 28.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Thursday 29.10. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Tuesday 03.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Wednesday 04.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Thursday 05.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Monday 09.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Tuesday 10.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Wednesday 11.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Thursday 12.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Monday 16.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Tuesday 17.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Wednesday 18.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Thursday 19.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Monday 23.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Tuesday 24.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Wednesday 25.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Thursday 26.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Monday 30.11. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Tuesday 01.12. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Wednesday 02.12. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Thursday 03.12. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Monday 07.12. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Wednesday 09.12. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Thursday 10.12. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Monday 14.12. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Tuesday 15.12. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Wednesday 16.12. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Thursday 17.12. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Thursday 07.01. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Monday 11.01. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Tuesday 12.01. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Wednesday 13.01. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Thursday 14.01. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Monday 18.01. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Tuesday 19.01. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Wednesday 20.01. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Thursday 21.01. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Monday 25.01. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Tuesday 26.01. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Wednesday 27.01. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
- Thursday 28.01. 12:05 - 12:50 Seminarraum 2A310 3.OG UZA II
Information
Aims, contents and method of the course
This will be a continuation of the course "Algebraic Topology" which has been offered last semester. Among other things, it will cover the following subjects. Homology with coefficients, Künneth theorem, the cohomology ring, Poincaré duality, CW complexes and cellular (co)homology, simplicial complexes and simplicial (co)homology, higher homotopy groups and Hurewitz homomorphisms. We will also discuss numerous applications such as the Lefschetz fixed point theorem, the Borsuk Ulam theorem and a result about the dimension of division algebras. If time permits, we will discuss characteristic classes.For further information see: http://www.mat.univie.ac.at/~stefan/ATII09.html
Assessment and permitted materials
Oral exam.
Minimum requirements and assessment criteria
To become acquainted with basic methods in Algebraic Topology and their application.
Examination topics
Algebraic Topology studies topological spaces and continuous maps by associating algebraic objects (eg. groups or rings) to spaces, and homomorphisms to continuous maps.
Reading list
[-] A. Hatcher, Algebraic Topology. Cambridge University Press.
Frei erhältlich unter: http://www.math.cornell.edu/~hatcher/AT/ATpage.html[-] A. Dold, Lectures on Algebraic Topology. Classics in Mathematics, Springer-Verlag, Berlin, 1995.[-] R. Stöcker und H. Zieschang, Algebraische Topologie. Eine Einführung. B.G. Teubner, Stuttgart.
Frei erhältlich unter: http://www.math.cornell.edu/~hatcher/AT/ATpage.html[-] A. Dold, Lectures on Algebraic Topology. Classics in Mathematics, Springer-Verlag, Berlin, 1995.[-] R. Stöcker und H. Zieschang, Algebraische Topologie. Eine Einführung. B.G. Teubner, Stuttgart.
Association in the course directory
MGEV
Last modified: Sa 02.04.2022 00:24