Warning! The directory is not yet complete and will be amended until the beginning of the term.
250044 SE Low Dimensional Topology (2021S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 08.02.2021 00:00 to Th 25.02.2021 17:30
- Registration is open from Fr 26.02.2021 00:00 to Fr 30.04.2021 23:59
- Deregistration possible until We 30.06.2021 23:59
Details
max. 25 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
zoom link for course:
https://univienna.zoom.us/j/99905169510?pwd=WHhJdUU5MXhuMHROUXVRSjNUcmZsdz09
-
Monday
01.03.
13:15 - 14:45
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
08.03.
13:15 - 14:45
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
15.03.
13:15 - 14:45
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
22.03.
13:15 - 14:45
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
12.04.
13:15 - 14:45
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
19.04.
13:15 - 14:45
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
26.04.
13:15 - 14:45
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
03.05.
13:15 - 14:45
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
10.05.
13:15 - 14:45
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
17.05.
13:15 - 14:45
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
31.05.
13:15 - 14:45
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
07.06.
13:15 - 14:45
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
14.06.
13:15 - 14:45
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
21.06.
13:15 - 14:45
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
28.06.
13:15 - 14:45
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Minimum requirements and assessment criteria
Examination topics
Reading list
book:
* P. Seidel, Fukaya categories and Picard-Lefschetz theorylecture notes:
* https://www.math.uni-hamburg.de/home/stern/Notes/Fukaya/Notes_Fukaya.pdf
* Denis Auroux: A beginner's introduction to Fukaya categories
* http://web.math.princeton.edu/~nsher/jussieu.html
* https://math.berkeley.edu/~auroux/277F09/index.html
* P. Seidel, Fukaya categories and Picard-Lefschetz theorylecture notes:
* https://www.math.uni-hamburg.de/home/stern/Notes/Fukaya/Notes_Fukaya.pdf
* Denis Auroux: A beginner's introduction to Fukaya categories
* http://web.math.princeton.edu/~nsher/jussieu.html
* https://math.berkeley.edu/~auroux/277F09/index.html
Association in the course directory
MGES
Last modified: Fr 12.05.2023 00:21
-A-infinity categories
-symplectic manifolds
-Floer homology
-Fukaya category
-and various applications of the Fukaya category in an understanding of knot invariants