Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250044 SE Low Dimensional Topology (2021S)

4.00 ECTS (2.00 SWS), SPL 25 - Mathematik
Continuous assessment of course work

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 25 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

zoom link for course:
https://univienna.zoom.us/j/99905169510?pwd=WHhJdUU5MXhuMHROUXVRSjNUcmZsdz09

password: compact surface of genus 1 (same as for Algebraic Topology)

  • Monday 01.03. 13:15 - 14:45 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 08.03. 13:15 - 14:45 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 15.03. 13:15 - 14:45 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 22.03. 13:15 - 14:45 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 12.04. 13:15 - 14:45 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 19.04. 13:15 - 14:45 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 26.04. 13:15 - 14:45 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 03.05. 13:15 - 14:45 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 10.05. 13:15 - 14:45 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 17.05. 13:15 - 14:45 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 31.05. 13:15 - 14:45 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 07.06. 13:15 - 14:45 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 14.06. 13:15 - 14:45 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 21.06. 13:15 - 14:45 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 28.06. 13:15 - 14:45 Digital
    Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

The aim of this reading course is to get acquainted with an invariant of symplectic manifolds called the Fukaya category and to describe a few applications of this invariant. This is a "category" whose objects are built from Lagrangian submanifolds and whose morphisms come from intersection points of these Lagrangians along with additional data.

In this reading seminar, we will try to understand the basics of Fukaya and we will study:
-A-infinity categories
-symplectic manifolds
-Floer homology
-Fukaya category
-and various applications of the Fukaya category in an understanding of knot invariants

Assessment and permitted materials

Minimum requirements and assessment criteria

Examination topics

Reading list

book:
* P. Seidel, Fukaya categories and Picard-Lefschetz theory

lecture notes:
* https://www.math.uni-hamburg.de/home/stern/Notes/Fukaya/Notes_Fukaya.pdf
* Denis Auroux: A beginner's introduction to Fukaya categories
* http://web.math.princeton.edu/~nsher/jussieu.html
* https://math.berkeley.edu/~auroux/277F09/index.html

Association in the course directory

MGES

Last modified: Fr 12.05.2023 00:21