250046 VO Topics in Analysis (2018W)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Monday 01.10. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 02.10. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 08.10. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 09.10. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 15.10. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 16.10. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 22.10. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 23.10. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 29.10. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 30.10. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 05.11. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 06.11. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 12.11. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 13.11. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 19.11. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 20.11. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 26.11. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 27.11. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 03.12. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 04.12. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 10.12. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 11.12. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 07.01. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 08.01. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 14.01. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 15.01. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 21.01. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 22.01. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 28.01. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 29.01. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral exam
Minimum requirements and assessment criteria
Understanding of the topics. Ability to present the main results orally.
Examination topics
Topics covered during the course
Reading list
* Kristian Seip, Interpolation and Sampling in Spaces of Analytic Functions, University Lecture Series 33. Providence, RI: American Mathematical Society (AMS). xii, 139 p., (2004)* Peter Duren and Alexander Schuster, Bergman Spaces
American Mathematical Society (AMS), Mathematical Surveys and Monographs, Vol.100 (2004).* Haakan Hedenmalm, B. Korenblum and Kehe Zhu, Theory of Bergman Spaces. Springer, (2000).* Gerald B. Folland, Harmonic Analysis in Phase Space, Princeton University Press, (1989).* Specialized references / lecture notes will be provided during the course.
American Mathematical Society (AMS), Mathematical Surveys and Monographs, Vol.100 (2004).* Haakan Hedenmalm, B. Korenblum and Kehe Zhu, Theory of Bergman Spaces. Springer, (2000).* Gerald B. Folland, Harmonic Analysis in Phase Space, Princeton University Press, (1989).* Specialized references / lecture notes will be provided during the course.
Association in the course directory
MANV
Last modified: Mo 07.09.2020 15:40
Both problems admit a complete geometric solution in terms of certain densities, and this will be presented in detail.Second, Fock spaces will be described in terms of the representation theory of the Heisenberg group. Sampling and interpolation theorems will be recast in terms of coherent systems for the Heisenberg group. As an application, the spanning properties of families of modulations and translations of the Gaussian will be completely described.Third, more general tools to study sampling and interpolation problems in contexts without analyticity will be introduced. Concrete examples will be discussed.Prerequisites: basic complex, functional, and Fourier analysis.See also:https://sites.google.com/site/jlromeroresearch/teaching