Warning! The directory is not yet complete and will be amended until the beginning of the term.
250047 VO Topics in Geometric Analysis (2022S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 09.03. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 16.03. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 23.03. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 30.03. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 06.04. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 27.04. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 04.05. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 11.05. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 18.05. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 25.05. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 01.06. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 08.06. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 15.06. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 22.06. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 29.06. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
There will be a thorough 30-minute oral exam based in part on exercises that I suggest in the course of the semester.
Minimum requirements and assessment criteria
ability to state, prove, discuss, and expand upon results covered in class
Examination topics
all topics discussed in class
Reading list
Association in the course directory
MGEV; MANV;
Last modified: We 14.06.2023 07:47
To get us started, I will review aspects of the theory of submanifolds of Euclidean space and Riemannian geometry. We then turn to the classical mathematical theory of soap films spanning a given boundary as developed by J. Douglas (who received one of the first two Fields medals for this contribution) and T. Rado. This discussion will contain a proof of the uniformization theorem in complex analysis as a special case. We then turn to properties of general minimal hypersurfaces including the crucial monotonicity formula and a discussion of minimal graphs. Time permitting, we will discuss a slick derivation of the curvature estimates for stable minimal hypersurfaces of E. Heinz, R. Schoen, L. Simon, and S.-T. Yau.Prerequisites:
It will be very useful to have familiarity with the basics of elliptic partial differential equations and differential geometry. The existence of solutions for the Dirichlet problem for the minimal surface equation will be used as a black box.