250048 VO Numerics of Partial Differential Equations (2019W)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Friday 31.01.2020
- Wednesday 12.02.2020
- Friday 28.02.2020
- Thursday 14.05.2020
- Friday 12.06.2020
- Tuesday 14.07.2020
- Friday 24.07.2020
- Friday 07.08.2020
- Tuesday 22.09.2020
Lecturers
Classes (iCal) - next class is marked with N
- Friday 04.10. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 07.10. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 11.10. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 14.10. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 18.10. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 21.10. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 25.10. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 28.10. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 04.11. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 08.11. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 11.11. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 15.11. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 18.11. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 22.11. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 25.11. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 29.11. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 02.12. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 06.12. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 09.12. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 13.12. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 16.12. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 10.01. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 13.01. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 17.01. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 20.01. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 24.01. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 27.01. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 31.01. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
The course mainly focuses on Finite Element Methods for the numerical approximation of Partial Differential Equations. Three aspects of the finite element method will be considered: i) theoretical foundations, ii) examples of applications to the numerical approximation of partial differential equations arising in different application domains, iii) implementation details. After revising some basic concepts in functional analysis, finite element methods for the Poisson problem will be introduced; their stability and error analysis, as well as the basic tools for their implementation, will be presented. Then, finite element approximations of the heat equation, of the Helmholtz problem and of advection-dominated advection-diffusion problems will be considered, discussing the respective specific issues. Implementation details will be discussed. The last part of this course, depending on the students' interests, will concern either other applications (fluid mechanics, electromagnetics, elasticity), or non standard finite element methods (as discontinuous Galerkin methods).
Assessment and permitted materials
Final exam.
Minimum requirements and assessment criteria
Presentation of theoretical and numerical aspects of Finite Element Methods for the numerical approximation of Partial Differential Equations arising from different applications.
Examination topics
Content of lectures.
Reading list
Suggested reading: A. Quarteroni, Numerical Models for Differential Problems, Springer, 2014. Additional material will be distributed during the course.Course website: https://mat.univie.ac.at/~perugia/TEACHING/NMPDEWS2019/nmpde2019.html
Association in the course directory
MANV, MAMV
Last modified: Tu 22.09.2020 11:29