Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250048 VO Lie Algebras and Representation Theory (2021S)

6.00 ECTS (4.00 SWS), SPL 25 - Mathematik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 01.03. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 04.03. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 08.03. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 11.03. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 15.03. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 18.03. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 22.03. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 25.03. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 12.04. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 15.04. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 19.04. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 22.04. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 26.04. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 29.04. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 03.05. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 06.05. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 10.05. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 17.05. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 20.05. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 27.05. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 31.05. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 07.06. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 10.06. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 14.06. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 17.06. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 21.06. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 24.06. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 28.06. 15:00 - 16:30 Digital
    Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

The lecture gives an introduction to the structure theory and representation theory of Lie algebras. The main focus here lies on the classification of finite-dimensional complex semisimple Lie algebras and their representations.

The aim of this lecture is to provide the basic theory and knowledge on Lie algebras and representation theory, as it is necessary for further directions of Differential Geometry, Number Theory and many other areas.

After introducing basic notions of Lie algebra theory we discuss the theorems of Engel and Lie, the Jordan-Chevalley decomposition, the Cartan criteria, Weyl's theorem, the theorems of Levi and Malcev, the classification of complex semisimple Lie algebras and Serre's theorem. In the chapter on representations of semisimple Lie algebras we present the classification by highest weight, introducing also the universal enveloping algebra. We give several applications such as Weyl's character formula and Weyl's dimension formula.

Assessment and permitted materials

Written exam after the end of the lecture.

Minimum requirements and assessment criteria

50 % of the points for the written exam.

Examination topics

All major topics covered in the lecture.

Reading list

[1] Bourbaki, Nicolas: Lie groups and Lie algebras. 1975
[2] Fulton, William: Harris,Joe: Representation Theory. 2004
[3] A. Henderson: Representations of Lie Algebras. 2012
[4] Humphreys, James. E.: Introduction to Lie algebras and representation theory. 1972
[5] Jacobson, Nathan: Lie algebras. 1962
[6] Kirillov, A.A.: Representations of Lie groups and Lie algebras. 1985
[7] Knapp, Anthony W.: Lie Groups: Beyond an Introduction. 2002
[8] Serre, Jean-Pierre: Complex semisimple Lie algebras. 1987
[9] Varadarajan, V.S.: Lie groups, Lie algebras, and their representations. 1974
[10] Winter, David J.: Abstract Lie algebras. 1972

Association in the course directory

MGEV; MALV;

Last modified: Fr 12.05.2023 00:21