Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250049 VO Commutative Algebra (2022S)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Wednesday 02.03. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 07.03. 11:30 - 12:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 09.03. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 14.03. 11:30 - 12:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 16.03. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 21.03. 11:30 - 12:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 23.03. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 28.03. 11:30 - 12:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 30.03. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 04.04. 11:30 - 12:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 06.04. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 25.04. 11:30 - 12:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 27.04. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 02.05. 11:30 - 12:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 04.05. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 09.05. 11:30 - 12:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 11.05. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 16.05. 11:30 - 12:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 18.05. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 23.05. 11:30 - 12:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 25.05. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 30.05. 11:30 - 12:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 01.06. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 08.06. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 13.06. 11:30 - 12:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 15.06. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 20.06. 11:30 - 12:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 22.06. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 27.06. 11:30 - 12:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 29.06. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

Commutative Algebra (CA) may be described as the theory of Commutative rings. More concretely, its objects of study are ideals und in particular prime ideals in Commutative rings as well as moduls over Commutative rings (which generalizes the notion of an ideal).

Due to the generality of the notion of a Commutative ring and also of its concepts, CA it has become a foundation for many parts of mathematics. This is in particular true of Algebraic Geometry but also number theory and complex Geometry are in an essential way based on CA.

The course wants to give an introduction to basic results and concepts/methods for the study of Commutative rings and their (prime)ideals and moduls.

Prerequisites are the courses Algebra 1,2 from the Bachelor Curriculum.

Note: This lecture course is complemented by the course "Algebraic Geometry" by Prof. Hauser which also takes place this semester.

Assessment and permitted materials

written or oral exam

Minimum requirements and assessment criteria

To pass the (written or oral) exam

Examination topics

Contents of the lecture course

Reading list

Atiyah, MacDonald "Introduction to Commutative Algebra"

Kemper "A course in Commutative Algebra"

Kunz "Einführung in die kommutative Algebra und algebraische Geometrie"

Eisenbud "Commutative Algebra with a View towards Algebraic Geometry"

Bosch "Commutative Algebra and Algebraic geometry and Commutative Algebra"

Samuel, Zariski "Commutative Algebra I,II"

Matsumura "Commutative Algebra"

Association in the course directory

MALV

Last modified: Sa 01.07.2023 00:19