Warning! The directory is not yet complete and will be amended until the beginning of the term.
250050 VO Complex analysis (2015S)
Labels
Details
Language: German
Examination dates
- Thursday 09.07.2015
- Thursday 09.07.2015 14:00 - 17:00 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 25.09.2015 14:00 - 17:00 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 04.12.2015 14:00 - 17:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 04.03.2016 14:00 - 17:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 06.04.2016
- Tuesday 17.05.2016
- Wednesday 18.05.2016
- Wednesday 29.06.2016
- Thursday 16.11.2017
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 10.03. 09:45 - 11:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 17.03. 09:45 - 11:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 24.03. 09:45 - 11:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 14.04. 09:45 - 11:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 21.04. 09:45 - 11:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 28.04. 09:45 - 11:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 05.05. 09:45 - 11:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 12.05. 09:45 - 11:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 19.05. 09:45 - 11:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 02.06. 09:45 - 11:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 09.06. 09:45 - 11:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 16.06. 09:45 - 11:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 23.06. 09:45 - 11:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 30.06. 09:45 - 11:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Complex differentiability and holomorphy, analyticity and power series expansion, path integrals, Cauchy's integral theorem and Cauchy's integral formulas, special functions
Assessment and permitted materials
Written exam. Dates will be announced during the lecture course.
Minimum requirements and assessment criteria
Introduction to complex analysis.
Examination topics
Reading list
Lecture notes will be made available;(1) L.V. Ahlfors, Complex analysis: An introduction of the theory of analytic functions of one complex variable, 2nd edition, McGraw-Hill Book Co., NewYork-Toronto-London, 1966.(2) H. Cartan, Elementary theory of analytic functions of one and several complex variables, Dover Publications, Inc., New York, 1995, Translated from the French, Reprint of the 1973 edition.(3) R. Remmert and G. Schumacher, Funktionentheorie 1, Fünfte, neu bearbeitete Auflage, Berlin, Springer 2002.(4) W. Rudin, Real and complex analysis, 3rd edition, McGraw-Hill Book Co., New York, 1987.(5) E.M. Stein and R. Shakarchi, Complex analysis, Princeton Lectures in Analysis, II, Princeton University Press, Princeton, NJ, 2003.
Association in the course directory
KAN
Last modified: Mo 07.09.2020 15:40