Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250055 VO VO Schulmathematik Angewandte Mathematik (2017S)

2.00 ECTS (2.00 SWS), SPL 25 - Mathematik
PH-NÖ

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

It is strongly recommended to have attended the lecture "Angewandte Mathematik für LAK"!

  • Thursday 02.03. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 09.03. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 16.03. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 23.03. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 30.03. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 06.04. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 27.04. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 04.05. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 11.05. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 18.05. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 01.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 08.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 22.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 29.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß

Information

Aims, contents and method of the course

Modelling is one of the competencies, which are dominating the current discussion in mathematics education. Contributions to this topic include almost all fields of (school-)mathematics and all levels.
The central theme in this variety of contents and complexities is the so called modelling cycle: first a real situation must be simplified and structured to get a real model. Then a mathematical model is formed by translating the real model into the language of mathematics, Now one can use mathematical methods to find solutions. These solutions have to be interpreted in relation to the real model. Last but not least a validation with respect to the original situation must happen. If it is not satisfying, the cycle will be passed once again with (slightly) changed parameters, conditions etc.
In this course many different school relevant examples will be presented to demonstrate, analyse, discuss and reflect this process. Furthermore, some aspects of numerical mathematics, which play a role in school, should complete this lecture.

Assessment and permitted materials

Written exams.

Minimum requirements and assessment criteria

Analysis and reflection of important (didactical) concepts and conceptions of applied mathematics with respect to corresponding contents of school mathematics.
The major number of tasks to be worked on at the colloquium must be assessed positively in order to successfully complete the lecture.

Examination topics

Lecture given in a classical way with the option to discuss also during the course. The total content of the lectures is what you have to learn to pass the written exam.

Reading list

Ableitinger, Christoph: Biomathematische Modelle im Unterricht. Fachwissenschaftliche und didaktische Grundlagen mit Unterrichtsmaterialien [Biomathematical models in class. Scientific and didactic foundations with classroom materials. In German]. Springer Vieweg+Teubner, Wiesbaden 2011.
Beutelspacher, Albrecht and Zschiegner, Marc-Alexander: Diskrete Mathematik für Einsteiger. Mit Anwendungen in Technik und Informatik [Discrete mathematics for beginners. Bachelor and teacher education. In German]. Springer Fachmedien, Wiesbaden 2014 (fifth edition).
Engel, Joachim: Anwendungsorientierte Mathematik: Von Daten zur Funktion. Eine Einführung in die mathematische Modellbildung für Lehramtsstudierende [Application oriented mathematics. From data to function. An introduction to modelling for teacher students. In German]. Springer, Berlin Heidelberg 2010.
Haftendorn, Dörte: Mathematik sehen und verstehen. Schlüssel zur Welt [Seeing and understanding mathematics. Key to the world. In German]. Spektrum Akademischer Verlag, Heidelberg 2010.
Humenberger, Johann and Reichel, Hans-Christian: Fundamentale Ideen der Angewandten Mathematik und ihre Umsetzung im Unterricht [Fundamental ideas of applied mathematics. In German]. Lehrbücher und Monographien zur Didaktik der Mathematik, Band 31. Edited by N. Knoche and H. Scheid. BI Wissenschaftsverlag, Mannheim u. a. 1995.
Maaß, Jürgen: Modellieren in der Schule. Ein Lernbuch zu Theorie und Praxis des realitätsbezogenen Mathematikunterrichts [Modeling in school. A learning book on theory and practice of application-oriented mathematics teaching. In German]. Schriften zum Modellieren und zum Anwenden von Mathematik, Band 5. Edited by Stanislaw Schukajlow-Wasjutinski. WTM, Münster 2015.
Schriftenreihe der ISTRON-Gruppe. (Neue) Materialien für einen realitätsbezogenen
Mathematikunterricht. 21 Bände von 1994 bis 2017. Franzbecker, Hildesheim (u. a.) und Springer Fachmedien, Wiesbaden: https://userpages.uni-koblenz.de/~istron/home/.
Schuppar, Berthold and Humenberger, Hans: Elementare Numerik für die Sekundarstufe [Elementary numerical mathematics for secondary education. In German]. Springer, Berlin Heidelberg 2015.
Siller, Hans-Stefan: Modellbilden -- eine zentrale Leitidee der Mathematik [Modelling. A central idea of mathematics. In German]. Schriften zur Didaktik der Mathematik und Informatik an der Universität Salzburg, Volume 2. Shaker Verlag, Aachen 2008.
Waldecker, Rebecca and Rempe-Gillen, Lasse: Primzahltests für Einsteiger. Zahlentheorie -- Algorithmik -- Kryptographie [Primality testing for beginners. Number theory ? algorithmics ? cryptography. In German]. Springer Fachmedien, Wiesbaden 2016 (second edition).

Association in the course directory

UFMAMA03; LAD

Last modified: We 21.04.2021 13:54