Warning! The directory is not yet complete and will be amended until the beginning of the term.
250064 VO Advanced complex analysis (2023W)
Labels
ON-SITE
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Tuesday 23.01.2024
- Wednesday 07.02.2024
- Thursday 08.02.2024
- Friday 01.03.2024
- Monday 11.03.2024
- Friday 22.03.2024
- Friday 03.05.2024
- Wednesday 19.06.2024
- Wednesday 24.07.2024
- Wednesday 25.09.2024
Lecturers
Classes (iCal) - next class is marked with N
I will attend a conference from Oct. 8-13, there will be no lectures and no proseminar. I will try to make up at least one of the lectures later.
- Tuesday 03.10. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 06.10. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 10.10. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 17.10. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 20.10. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 24.10. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 31.10. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 03.11. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 07.11. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 14.11. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 17.11. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 21.11. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 28.11. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 01.12. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 05.12. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 12.12. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 15.12. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 09.01. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 16.01. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 19.01. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 23.01. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 30.01. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral exam on entire course material
Minimum requirements and assessment criteria
Satisfactory answer of questions about course and solution of problems.
To pass, at least half of the questions need to be answered correctly.
Theoretical list of grades:
88-100 sehr gut
75-87 gut
62-74 befriedigend
50-61 genuegend
<50 nicht genuegend
To pass, at least half of the questions need to be answered correctly.
Theoretical list of grades:
88-100 sehr gut
75-87 gut
62-74 befriedigend
50-61 genuegend
<50 nicht genuegend
Examination topics
Entire course material
Reading list
John B. Conway, Functions of one complex variable I
L. Ahlfors, Complex analysis
B. Simon, Basic complex analysis
R. Remmert. Complex analysis
W. Rudin, Real and complex analysis
E. Stein, R. Shakarchi, Princeton Lectures on Analysis, Vol. 2
L. Ahlfors, Complex analysis
B. Simon, Basic complex analysis
R. Remmert. Complex analysis
W. Rudin, Real and complex analysis
E. Stein, R. Shakarchi, Princeton Lectures on Analysis, Vol. 2
Association in the course directory
MANK
Last modified: We 25.09.2024 12:06
Topics include but are not limited to: general versions of Cauchy's theorem, homology, homotopy, residue calculus, theorems of Weierstrass, Mittag-Leffler, approximation theorem of Runge, Riemann mapping theorem, entire functions, analytic continuation.The selection of material will depend on the prior knowledge of students. Some of the necessary background will be recapitulated at the beginning of the course.Prerequisites: analytic functions and their characterization, line integrals and simple versions of Cauchy's integral theorem, residue theorem, singularities, Laurent series (see lecture notes of Markus Fulmek).