Warning! The directory is not yet complete and will be amended until the beginning of the term.
250066 VO Algebraic number theory (2013W)
Labels
Details
Language: German
Examination dates
- Wednesday 05.03.2014
- Friday 14.03.2014
- Friday 21.03.2014
- Monday 12.05.2014
- Thursday 15.05.2014
- Wednesday 25.06.2014
- Thursday 07.08.2014
- Wednesday 13.08.2014
- Monday 18.08.2014
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 02.10. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 03.10. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 09.10. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 10.10. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 16.10. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 17.10. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 23.10. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 24.10. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 30.10. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 31.10. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 06.11. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 07.11. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 13.11. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 14.11. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 20.11. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 21.11. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 27.11. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 28.11. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 04.12. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 05.12. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 11.12. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 12.12. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 18.12. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 08.01. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 09.01. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 15.01. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 16.01. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 22.01. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 23.01. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 29.01. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 30.01. 14:00 - 16:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Written exam or oral exam after the end of the lecture.
Minimum requirements and assessment criteria
Examination topics
Reading list
[BUR] D. Burde, Commutative Algebra, 2009.
[COH] H. Cohen, A course in computational algebraic number theory, 1993.
[KOC] H. Koch, Algebraic number theory, 1997.
[LAN] S. Lang, Algebraic number theory, 1994.
[NEU] J. Neukirch, Algebraic number theory, 1999.
(WAS] L. C. Washington, Introduction to cyclotomic fields, 1997.
[COH] H. Cohen, A course in computational algebraic number theory, 1993.
[KOC] H. Koch, Algebraic number theory, 1997.
[LAN] S. Lang, Algebraic number theory, 1994.
[NEU] J. Neukirch, Algebraic number theory, 1999.
(WAS] L. C. Washington, Introduction to cyclotomic fields, 1997.
Association in the course directory
MALZ
Last modified: Mo 07.09.2020 15:40
of integers in the broadest sense. Algebraic number theory studies
the arithmetic of algebraic number fields the ring of integers
in the number field, the ideals and units in the ring of integers,
the extent to which unique factorization holds, and so on.
Among other things, the theory arose out of the study of
Diophantine equations.The chapters are as follows:Chapter 1: Integral ring extensions, in particular global fields and their
rings of interegs, norm, trace and discriminant.Chapter 2: Ideals in Dedekind rings, fractional ideals, ideal class group,
unique factorization.Chapter 3: Finiteness of the class number, Minkowski-Theory,
rings of integers as lattices, special case calss number $1$ fields.Chapter 4: Dirichlet's Unit Theorem, the analytic class number formula.Chapter 5: Decomposition and ramification, in general and for Galois
extensions. Ramification and discriminant.Chapter 6: Cyclotomic fields and their rings of integers, units, and the
Fermat equation.Chapter 7: Absolute values and local fields, completions, the adelic
viewpoint.