250066 UE Seminar (Nonlinear functional analysis) (2016S)
Continuous assessment of course work
Labels
Details
Language: English
Lecturers
Classes (iCal) - next class is marked with N
English
- Thursday 03.03. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 10.03. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 17.03. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 07.04. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 14.04. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 21.04. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 28.04. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 12.05. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 19.05. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 02.06. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 09.06. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 16.06. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 23.06. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 30.06. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
A short presentation of a theme.
Minimum requirements and assessment criteria
Examination topics
A short presentation of a theme that illustrates
the developed techniques.
the developed techniques.
Reading list
R. F. Brown, "A topological introduction to nonlinear analysis",
Birkhäuser Boston, Inc., Boston, MA, 2004.M. S. Berger, "Nonlinearity and functional analysis",
Academic Press, New York, London, 1977.
Birkhäuser Boston, Inc., Boston, MA, 2004.M. S. Berger, "Nonlinearity and functional analysis",
Academic Press, New York, London, 1977.
Association in the course directory
MANS
Last modified: Mo 07.09.2020 15:40
emphasis on the interaction between the abstract
theory and motivating examples. Some important tools
from nonlinear functional analysis
(regarding e.g. continuity, differentiability, compactness
of operators, as well as the choice of various function spaces)
will be discussed. Their applicability will be illustrated on
examples relevant to mathematical physics.