250066 VO Advanced partial differential equations (2016W)
Labels
Pre-requisities are some acquaintance with ordinary differential equations
and functional analysis. Prior familiarity with PDEs, while helpful, is not essential.
and functional analysis. Prior familiarity with PDEs, while helpful, is not essential.
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
Language of instruction: English
- Monday 03.10. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 04.10. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 10.10. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 11.10. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 17.10. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 18.10. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 24.10. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 25.10. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 31.10. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 07.11. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 08.11. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 14.11. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 15.11. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 21.11. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 22.11. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 28.11. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 29.11. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 05.12. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 06.12. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 12.12. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 13.12. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 09.01. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 10.01. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 16.01. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 17.01. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 23.01. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 24.01. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 30.01. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 31.01. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Blackboard presentation, with a topic chosen two weeks in advance from a
provided list of possible topics.
provided list of possible topics.
Minimum requirements and assessment criteria
Familiarity with the details of the specific topic to be presented, and an
understanding of how this relates to techniques and methods discussed
in a broader context during the lectures.
understanding of how this relates to techniques and methods discussed
in a broader context during the lectures.
Examination topics
Techniques and methods discussed during the lectures and specific
details of the topic for the blackboard presentation.
details of the topic for the blackboard presentation.
Reading list
Evans, Lawrence C. Partial differential equations. Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010.Brezis, Haim Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.
Association in the course directory
MANP
Last modified: Mo 07.09.2020 15:40
a wide variety of real-world systems. The course will aim to stress the importance of
both theory and applications of differential equations. After reviewing some basic aspects
of linear PDEs we will discuss methods and techniques that were developed to investigate
certain types of nonlinear PDEs.