Universität Wien

250066 VO Advanced partial differential equations (2016W)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik

Pre-requisities are some acquaintance with ordinary differential equations
and functional analysis. Prior familiarity with PDEs, while helpful, is not essential.

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

Language of instruction: English

  • Monday 03.10. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 04.10. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 10.10. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 11.10. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 17.10. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 18.10. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 24.10. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 25.10. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 31.10. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 07.11. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 08.11. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 14.11. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 15.11. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 21.11. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 22.11. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 28.11. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 29.11. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 05.12. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 06.12. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 12.12. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 13.12. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 09.01. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 10.01. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 16.01. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 17.01. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 23.01. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 24.01. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 30.01. 13:30 - 15:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 31.01. 13:45 - 14:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

Partial differential equations occupy a central role in mathematics because they model
a wide variety of real-world systems. The course will aim to stress the importance of
both theory and applications of differential equations. After reviewing some basic aspects
of linear PDEs we will discuss methods and techniques that were developed to investigate
certain types of nonlinear PDEs.

Assessment and permitted materials

Blackboard presentation, with a topic chosen two weeks in advance from a
provided list of possible topics.

Minimum requirements and assessment criteria

Familiarity with the details of the specific topic to be presented, and an
understanding of how this relates to techniques and methods discussed
in a broader context during the lectures.

Examination topics

Techniques and methods discussed during the lectures and specific
details of the topic for the blackboard presentation.

Reading list

Evans, Lawrence C. Partial differential equations. Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010.

Brezis, Haim Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.

Association in the course directory

MANP

Last modified: Mo 07.09.2020 15:40