Warning! The directory is not yet complete and will be amended until the beginning of the term.
250066 VO Advanced partial differential equations (2019W)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Friday 14.02.2020
- Thursday 27.02.2020
- Friday 06.03.2020
- Monday 20.04.2020
- Tuesday 21.04.2020
- Thursday 09.07.2020
- Tuesday 14.07.2020
- Thursday 17.09.2020
- Friday 18.09.2020
- Monday 21.09.2020
- Friday 23.10.2020
- Friday 30.10.2020
- Tuesday 03.11.2020
- Wednesday 11.11.2020
- Wednesday 17.02.2021
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 01.10. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 03.10. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 08.10. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 10.10. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 15.10. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 17.10. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 22.10. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 24.10. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 29.10. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 31.10. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 05.11. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 07.11. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 12.11. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 14.11. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 19.11. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 21.11. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 26.11. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 28.11. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 03.12. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 05.12. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 10.12. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 12.12. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 17.12. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 07.01. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 09.01. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 14.01. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 16.01. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 21.01. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 23.01. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 28.01. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 30.01. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
The students will get a toolbox of modern methods for the analysis of partial differential equations. We cover Sobolev spaces and inequalities, elliptic regularity, semilinear elliptic and parabolic equations, nonlinear Schrödinger equations, scattering, quasilinear wave equations, Klainerman's vector field method, singularity formation. The course will provide a "hands-on" approach, i.e., we will not prove the most general versions of the theorems but the most useful ones.
Assessment and permitted materials
Oral or written exam, depending on the number of participants.
Minimum requirements and assessment criteria
Prerequisites: Students should have a basic knowledge of PDEs and functional analysis as provided, for instance, in the Bachelor program Mathematics at the University of Vienna.
Examination topics
Everything covered in the course.
Reading list
I will not follow a particular reference. Standard texts on PDEs include Evans, Taylor, John. For wave and Schrödinger equations, see e.g. Sogge, Tao, Sulem-Sulem. More references will provided in the course when appropriate.
Association in the course directory
MANP
Last modified: Th 18.02.2021 00:24