Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250071 VO Lie groups (2022W)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik
ON-SITE

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Tuesday 04.10. 15:45 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 05.10. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 11.10. 15:45 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 12.10. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 18.10. 15:45 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 19.10. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 25.10. 15:45 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 08.11. 15:45 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 09.11. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 15.11. 15:45 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 16.11. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 22.11. 15:45 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 23.11. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 29.11. 15:45 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 30.11. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 06.12. 15:45 - 18:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 07.12. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 13.12. 15:45 - 18:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 14.12. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 10.01. 15:45 - 18:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 11.01. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 17.01. 15:45 - 18:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 18.01. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 24.01. 15:45 - 18:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 25.01. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 31.01. 15:45 - 18:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß

Information

Aims, contents and method of the course

Lecture course on the fundamentals of the theory of Lie groups and their Lie algebras. The main prerequisites is analysis on manifolds. Contents: Lie groups and their Lie algebras; Lie subgroups and homogeneous spaces; Frobenius' theorem and existence results; compact Lie groups and their representations, maximal tori, the Peter-Weyl theorem. For further information, please refer to the preface of the lecture notes, which are available via http://www.mat.univie.ac.at/~cap/lectnotes.html .
According to the current planning, the course should be taught in presence Of course, if additional corona restrictions are imposed, it will be necessary to include self-learning and online elements during the semester. There is a moodle page set up for the course to which you can self-inscribe. This will be used for communication about the course, in particular in case online teaching becomes necessary.

Assessment and permitted materials

Oral exam after the end of the course.

Minimum requirements and assessment criteria

Fundamental facts on Lie groups, their relation to Lie algebras, their role as groups of symmetries, and on the theory of compact Lie groups and their representations. The usual standards for the master program will be imposed.

Examination topics

The contents of the course.

Reading list

Lecture notes will available online via http://www.mat.univie.ac.at/~cap/lectnotes.html . There may be some small changes or corrections compared to the version from 2020/21 that is currently available online. The notes also contain information on additional literature.

Association in the course directory

MGEL

Last modified: Tu 29.08.2023 13:47