250073 VU Topics in Combinatorics (2022S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 07.02.2022 00:00 to Mo 21.02.2022 23:59
- Deregistration possible until Th 31.03.2022 23:59
Details
max. 25 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
The Art of Bijections
(Non-trivial) bijections are one of the most beautiful things incombinatorics, which can be extremely powerful and insightful.
In the best case, they provide one-picture proofs of surprising
identities and relations between seemingly totally different
objects.In this course, I shall explain various classical and not-so-classical
bijections for paths, trees, combinatorial maps, set and integer partitions, tilings, tableaux, etc., culminating in the "queen of all bijections", the Robinson-Schensted-Knuth correspondence and its "relatives".While explaining an individual bijection, I will use the opportunity to
tell more about the respective subject.Nothing except basic combinatorial facts (generating functions) are required.Open problems are plenty (but probably very difficult).
- Friday 04.03. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 07.03. 16:45 - 17:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 14.03. 16:45 - 17:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 18.03. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 21.03. 16:45 - 17:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 25.03. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 28.03. 16:45 - 17:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 01.04. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 04.04. 16:45 - 17:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 08.04. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 25.04. 16:45 - 17:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 29.04. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 02.05. 16:45 - 17:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 06.05. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 09.05. 16:45 - 17:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 13.05. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 16.05. 16:45 - 17:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 20.05. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 23.05. 16:45 - 17:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 27.05. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 30.05. 16:45 - 17:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 03.06. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 10.06. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 13.06. 16:45 - 17:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 17.06. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 20.06. 16:45 - 17:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 24.06. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 27.06. 16:45 - 17:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
The grade will be based on participation in the solution
of exercises and an oral exam at the end of the course.
of exercises and an oral exam at the end of the course.
Minimum requirements and assessment criteria
Examination topics
Reading list
Association in the course directory
MALV
Last modified: Th 03.03.2022 16:09
combinatorics, which can be extremely powerful and insightful.
In the best case, they provide one-picture proofs of surprising
identities and relations between seemingly totally different
objects.In this course, I shall explain various classical and not-so-classical
bijections for paths, trees, combinatorial maps, set and integer partitions, tilings, tableaux, etc., culminating in the "queen of all bijections", the Robinson-Schensted-Knuth correspondence and its "relatives".While explaining an individual bijection, I will use the opportunity to
tell more about the respective subject.Nothing except basic combinatorial facts (generating functions) are required.Open problems are plenty (but probably very difficult).