Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250074 VO Harmonic Analysis (2011W)

6.00 ECTS (4.00 SWS), SPL 25 - Mathematik

Auf der e-learning Plattform werden einige Materialien bereitgstellt.
Eine Anmeldung ist erwünscht aber nicht notwendig.

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 03.10. 09:15 - 11:00 Seminarraum
  • Tuesday 04.10. 09:15 - 11:00 Seminarraum
  • Monday 10.10. 09:15 - 11:00 Seminarraum
  • Tuesday 11.10. 09:15 - 11:00 Seminarraum
  • Monday 17.10. 09:15 - 11:00 Seminarraum
  • Tuesday 18.10. 09:15 - 11:00 Seminarraum
  • Monday 24.10. 09:15 - 11:00 Seminarraum
  • Tuesday 25.10. 09:15 - 11:00 Seminarraum
  • Monday 31.10. 09:15 - 11:00 Seminarraum
  • Monday 07.11. 09:15 - 11:00 Seminarraum
  • Tuesday 08.11. 09:15 - 11:00 Seminarraum
  • Monday 14.11. 09:15 - 11:00 Seminarraum
  • Tuesday 15.11. 09:15 - 11:00 Seminarraum
  • Monday 21.11. 09:15 - 11:00 Seminarraum
  • Tuesday 22.11. 09:15 - 11:00 Seminarraum
  • Monday 28.11. 09:15 - 11:00 Seminarraum
  • Tuesday 29.11. 09:15 - 11:00 Seminarraum
  • Monday 05.12. 09:15 - 11:00 Seminarraum
  • Tuesday 06.12. 09:15 - 11:00 Seminarraum
  • Monday 12.12. 09:15 - 11:00 Seminarraum
  • Tuesday 13.12. 09:15 - 11:00 Seminarraum
  • Monday 09.01. 09:15 - 11:00 Seminarraum
  • Tuesday 10.01. 09:15 - 11:00 Seminarraum
  • Monday 16.01. 09:15 - 11:00 Seminarraum
  • Tuesday 17.01. 09:15 - 11:00 Seminarraum
  • Monday 23.01. 09:15 - 11:00 Seminarraum
  • Tuesday 24.01. 09:15 - 11:00 Seminarraum
  • Monday 30.01. 09:15 - 11:00 Seminarraum
  • Tuesday 31.01. 09:15 - 11:00 Seminarraum

Information

Aims, contents and method of the course

Fourier series and Fourier integrals: summability and convergence, Plancherel theorem, Poisson summation formula, Hilbert transform.
Introduction to analysis on the Heisenberg group

Assessment and permitted materials

oral exam

Minimum requirements and assessment criteria

The course will introduce to harmonic analysis starting from a concrete commutative setting.
Some aspects of a (slightly) non-commutative situation will be discussed.

Examination topics

Perequsits: Knowledge in analysis (calculus)and linear algebra as given in the first semesters of university studies

Reading list

Deitmar, A.: A first course in harmonic analysis,
Katznelson, Y.: An introduction to harmonic analysis,
Dym, H. and McKean, H.P.: Fourier series and integrals,
Laugesen, R.: Harmonic analysis lecture notes.

Association in the course directory

MANV

Last modified: Mo 07.09.2020 15:40