Warning! The directory is not yet complete and will be amended until the beginning of the term.
250074 VO Introduction to theoretical computer science (2018W)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Friday 18.01.2019
- Wednesday 30.01.2019
- Wednesday 13.02.2019
- Monday 25.02.2019
- Thursday 28.02.2019
- Friday 01.03.2019
- Thursday 07.03.2019
Lecturers
Classes (iCal) - next class is marked with N
The first course will be on Friday, Oct. 12.
- Friday 12.10. 16:00 - 18:15 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Friday 19.10. 16:00 - 18:15 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Friday 09.11. 16:00 - 18:15 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Friday 16.11. 16:00 - 18:15 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Friday 23.11. 16:00 - 18:15 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Friday 30.11. 16:00 - 18:15 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Friday 07.12. 16:00 - 18:15 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Friday 14.12. 16:00 - 18:15 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Friday 11.01. 16:00 - 18:15 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Friday 18.01. 16:00 - 18:15 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Friday 25.01. 16:00 - 18:15 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
Information
Aims, contents and method of the course
This is an introductory lecture in theoretical computer science, which does not require preliminary knowledge in mathematical logic. The course is divided into two main themes: recursion theory and complexity of computation. In recursion theory we will study the notion of recursiveness, recursive enumerability, oracles, Turing jump and the Turing operator. In complexity theory, we will consider various complexity classes, time and space hierarchy theorems, as well as certain hard (in complexity theoretic sense) problems.
Assessment and permitted materials
Oral examination.
Minimum requirements and assessment criteria
Examination topics
Content of the lectures.
Reading list
1) A. Arora, B. Barak, "Computational complexity. A Modern Approach". Cambridge University Press, Cambridge, 2009.
2) H. Enderton, "Computability theory. An introduction to recursion theory". Elsevier/academic Press, Amsterdam, 2011
3) C. H. Papadimitriou, "Computational complexity". Addision-Wesley Publishing Company, 1994.
2) H. Enderton, "Computability theory. An introduction to recursion theory". Elsevier/academic Press, Amsterdam, 2011
3) C. H. Papadimitriou, "Computational complexity". Addision-Wesley Publishing Company, 1994.
Association in the course directory
MLOI
Last modified: Fr 18.11.2022 00:23