250075 VO Nonlinear Schrödinger and Wave equations (2023W)
Labels
ON-SITE
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes
Place: MMM - WPI Seminarrraum im 8. Stock Fak.Math, OMP1, 8.135
Time: Tuesday 12.30- 13.30
Wednesday 12.15-13.15
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral exam (presence on the blackboard or distance).
Minimum requirements and assessment criteria
The presentation is self-contained based on material distributed to the students.
Basic knowledge of functional analysis, PDEs and physics is helpful.
Basic knowledge of functional analysis, PDEs and physics is helpful.
Examination topics
The exam is an opportunity to prove the understanding of basic concepts, own lecture notes etc can be used during the exam.
Reading list
.) Mauser, N.J. and Stimming, H.P. "Nonlinear Schrödinger equations", lecture notes.) Sulem, P.L., Sulem, C.: "The Nonlinear Schrödinger Equation, Self-Focusing and Wave Collapse", Applied Math. Sciences 139, Springer N.Y. 1999.) Tao, Terence:
"Local And Global Analysis of Nonlinear Dispersive And Wave Equations (Cbms Regional Conference Series in Mathematics)", 373 p., American Mathematical Society, 2006.) Ginibre, J.: ``An Introduction to Nonlinear Schroedinger equations'', Hokkaido Univ. Technical Report, Series in Math. 43 (1996), pp. 80-128.
"Local And Global Analysis of Nonlinear Dispersive And Wave Equations (Cbms Regional Conference Series in Mathematics)", 373 p., American Mathematical Society, 2006.) Ginibre, J.: ``An Introduction to Nonlinear Schroedinger equations'', Hokkaido Univ. Technical Report, Series in Math. 43 (1996), pp. 80-128.
Association in the course directory
MAMV; MANV
Last modified: We 29.05.2024 15:26
a) quantum physics, where “one particle” NLS occur as approximate models for the linear N-body Schrödinger equation.
Quantum HydroDynamics.
b) nonlinear optics, where the paraxial approximation of the Helmholtz (wave) equation yields 2+1 dimensional cubic NLS2) Analysis:
Existence and Uniqueness (“Local/Global WellPosedness) of NLS and NLW
with local and non-local nonlinearities, scattering, finite(-time) Blow-up; asymptotic results e.g. for the (semi-)classical limit of NLS.3) Numerics:
Finite Element Methods for NLS,
Time Splitting,
Spectral methods,
Boundary conditionsMethods:
Functional analysis, Semigroup theory, Sobolev embeddings, Strichartz estimates, energy estimates, linear PDE theory, …