Warning! The directory is not yet complete and will be amended until the beginning of the term.
250076 VO Algebra versus Analysis (2021S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
-
Tuesday
02.03.
16:45 - 18:15
Digital
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
09.03.
16:45 - 18:15
Digital
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
16.03.
16:45 - 18:15
Digital
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
23.03.
16:45 - 18:15
Digital
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
13.04.
16:45 - 18:15
Digital
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
20.04.
16:45 - 18:15
Digital
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
27.04.
16:45 - 18:15
Digital
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
04.05.
16:45 - 18:15
Digital
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
11.05.
16:45 - 18:15
Digital
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
18.05.
16:45 - 18:15
Digital
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
01.06.
16:45 - 18:15
Digital
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
08.06.
16:45 - 18:15
Digital
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
15.06.
16:45 - 18:15
Digital
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
22.06.
16:45 - 18:15
Digital
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
29.06.
16:45 - 18:15
Digital
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
This Master's course aims at applying algebraic methods to (complex) analytic problems and analytic methods to algebraic problems. As such it will pick up famous problems and theories and look at them from both perspectives. Prospective topics are:* The algebraic closure of the field C(x) of complex rational functions via Puiseux series* Algebraic solutions of ordinary complex differential equations with polynomial coefficients and Fuchsian equations* Differential Galois theory and the algebraic closure of differential fields* Integrality of solutions of linear recurrences with polynomial coefficients* Hypergeometric equations and hypergeometric series* Differential equations and modular forms* Bernstein-Sato polynomials and D-modules* Algebraic power series define holomorphic functions* The Riemann extension theorem and the integral closure of rings of holomorphic functionsThe course shall serve in particular as an introduction to Master's thesis topics.
Assessment and permitted materials
Oral exam.
Minimum requirements and assessment criteria
Examination topics
Reading list
Association in the course directory
MALV; MANV;
Last modified: Fr 12.05.2023 00:21