Warning! The directory is not yet complete and will be amended until the beginning of the term.
250077 VO Selected topics in differential geometry (2009W)
Labels
Details
Language: German
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 06.10. 17:00 - 18:40 Seminarraum
- Thursday 08.10. 17:00 - 18:40 Seminarraum 2A310 3.OG UZA II
- Tuesday 13.10. 17:00 - 18:40 Seminarraum
- Thursday 15.10. 17:00 - 18:40 Seminarraum 2A310 3.OG UZA II
- Tuesday 20.10. 17:00 - 18:40 Seminarraum
- Thursday 22.10. 17:00 - 18:40 Seminarraum 2A310 3.OG UZA II
- Tuesday 27.10. 17:00 - 18:40 Seminarraum
- Thursday 29.10. 17:00 - 18:40 Seminarraum 2A310 3.OG UZA II
- Tuesday 03.11. 17:00 - 18:40 Seminarraum
- Thursday 05.11. 17:00 - 18:40 Seminarraum 2A310 3.OG UZA II
- Tuesday 10.11. 17:00 - 18:40 Seminarraum
- Thursday 12.11. 17:00 - 18:40 Seminarraum 2A310 3.OG UZA II
- Tuesday 17.11. 17:00 - 18:40 Seminarraum
- Thursday 19.11. 17:00 - 18:40 Seminarraum 2A310 3.OG UZA II
- Tuesday 24.11. 17:00 - 18:40 Seminarraum
- Thursday 26.11. 17:00 - 18:40 Seminarraum 2A310 3.OG UZA II
- Tuesday 01.12. 17:00 - 18:40 Seminarraum
- Thursday 03.12. 17:00 - 18:40 Seminarraum 2A310 3.OG UZA II
- Thursday 10.12. 17:00 - 18:40 Seminarraum 2A310 3.OG UZA II
- Tuesday 15.12. 17:00 - 18:40 Seminarraum
- Thursday 17.12. 17:00 - 18:40 Seminarraum 2A310 3.OG UZA II
- Thursday 07.01. 17:00 - 18:40 Seminarraum 2A310 3.OG UZA II
- Tuesday 12.01. 17:00 - 18:40 Seminarraum
- Thursday 14.01. 17:00 - 18:40 Seminarraum 2A310 3.OG UZA II
- Tuesday 19.01. 17:00 - 18:40 Seminarraum
- Thursday 21.01. 17:00 - 18:40 Seminarraum 2A310 3.OG UZA II
- Tuesday 26.01. 17:00 - 18:40 Seminarraum
- Thursday 28.01. 17:00 - 18:40 Seminarraum 2A310 3.OG UZA II
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral exam
Minimum requirements and assessment criteria
Based on the course "Global semi-Riemannian Geometry", in this lecture course we give a complete proof of the singularity theorems of Hawking and Penrose. The necessary prerequisites from calculus of variations and causality in Lorentz manifolds will be developed in the course.
Examination topics
Reading list
C. Bär, Lorentzgeometrie, Vorlesungsskriptum
S.W. Hawking, G.F.R. Ellis, The large scale structure of space-time
B. O'Neill, Semi-Riemannian Geometry
S.W. Hawking, G.F.R. Ellis, The large scale structure of space-time
B. O'Neill, Semi-Riemannian Geometry
Association in the course directory
MGEV
Last modified: Sa 02.04.2022 00:24
*) Variation of energy
*) Focal points along null geodesics
*) Causality
*) Convex coverings
*) Quasi-limits
*) Causality conditions
*) Time separation
*) Globally hyperbolic sets
*) Achronal sets
*) Cauchy hypersurfaces
*) Cauchy developments
*) Cauchy horizons
*) Singularity theorems