Warning! The directory is not yet complete and will be amended until the beginning of the term.
250079 VO Topics in Finite Elements (2018S)
Labels
Details
max. 25 participants
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 06.03. 12:30 - 14:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 13.03. 12:30 - 14:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 20.03. 12:30 - 14:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 10.04. 12:30 - 14:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 17.04. 12:30 - 14:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 24.04. 12:30 - 14:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 08.05. 12:30 - 14:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 15.05. 12:30 - 14:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 29.05. 12:30 - 14:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 05.06. 12:30 - 14:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 12.06. 12:30 - 14:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 19.06. 12:30 - 14:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 26.06. 12:30 - 14:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
This course focuses on topics within finite elements methods for solution of partial differential equations. The course will cover the a posteriori error analysis for adaptive finite element methods and non-standard finite elements, such as the discontinuous Galerkin finite element method. Further topics may depend on students interests; possible topics include: i) eigenvalue problems, ii) time- dependent equations (such as the transport equation and wave equation), and iii) high-order finite element methods.
Assessment and permitted materials
The final exam will consist of an oral examination on the topics covered.
Minimum requirements and assessment criteria
Examination topics
Material covered in the lecture.
Reading list
Suggested reading material:
R. Verfürth, A posteriori error estimation techniques for finite element methods, Oxford University Press, 2013.
A. Quarteroni, Numerical Models for Differential Problems, Springer, 2014.
D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Springer, 2012.
Other material will be distributed during the course.
R. Verfürth, A posteriori error estimation techniques for finite element methods, Oxford University Press, 2013.
A. Quarteroni, Numerical Models for Differential Problems, Springer, 2014.
D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Springer, 2012.
Other material will be distributed during the course.
Association in the course directory
MAMV
Last modified: Mo 07.09.2020 15:40