Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250079 VO Topics in Finite Elements (2024S)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 25 participants
Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 04.03. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 11.03. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 18.03. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 08.04. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 15.04. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 22.04. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 29.04. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 06.05. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 13.05. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 27.05. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 03.06. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 10.06. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 17.06. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 24.06. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

This course focuses on advanced topics in finite element methods for the approximation of partial differential equations. The first part of the course will be dedicated to the finite element approximation of the linear the wave equation. In the second part of the course, students will be introduced to the Reduced Basis Method. The focus will be the presentation of the Greedy Algorithm, the Proper Orthogonal Decomposition, some a posteriori error estimators and the Empirical Interpolation Method. The example of application will be the heat equation.

Assessment and permitted materials

Final oral exam.

Minimum requirements and assessment criteria

Positive grade in the final oral exam.

Examination topics

Contents of the course.

Reading list

Reading material and suggestions will be given during the course.

Association in the course directory

MAMV

Last modified: Tu 29.10.2024 09:46