Warning! The directory is not yet complete and will be amended until the beginning of the term.
250081 VO Real analysis (2020S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Saturday 27.06.2020
- Wednesday 15.07.2020
- Thursday 30.07.2020
- Monday 14.09.2020
- Monday 28.09.2020
- Tuesday 27.10.2020
- Tuesday 17.11.2020
- Monday 23.11.2020
- Monday 21.12.2020
- Thursday 14.01.2021
Lecturers
Classes (iCal) - next class is marked with N
For Information regarding Home-Learning please see the Moodle-Page of the course
- Monday 02.03. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 09.03. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 16.03. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 23.03. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 30.03. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 20.04. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 27.04. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 04.05. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 11.05. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 18.05. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 25.05. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 08.06. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 15.06. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 22.06. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 29.06. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
We discuss Lebesgue spaces and their connection to Fourier analysis.
Assessment and permitted materials
oral or written exam
Minimum requirements and assessment criteria
Detailed knowledge of the course material
Examination topics
All topics covered in the lecture
Reading list
Walter Rudin: Real and Complex Analysis
(definitions/theorems, proofs may be different)
(definitions/theorems, proofs may be different)
Association in the course directory
MANF
Last modified: Th 14.01.2021 17:32