Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250081 VO Real analysis (2020S)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

For Information regarding Home-Learning please see the Moodle-Page of the course

  • Monday 02.03. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 09.03. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 16.03. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 23.03. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 30.03. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 20.04. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 27.04. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 04.05. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 11.05. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 18.05. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 25.05. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 08.06. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 15.06. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 22.06. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 29.06. 13:45 - 15:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

We discuss Lebesgue spaces and their connection to Fourier analysis.

Assessment and permitted materials

oral or written exam

Minimum requirements and assessment criteria

Detailed knowledge of the course material

Examination topics

All topics covered in the lecture

Reading list

Walter Rudin: Real and Complex Analysis
(definitions/theorems, proofs may be different)

Association in the course directory

MANF

Last modified: Th 14.01.2021 17:32