Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250089 VO Analytic Number Theory (2014W)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Friday 03.10. 11:00 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 10.10. 11:00 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 17.10. 11:00 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 24.10. 11:00 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 31.10. 11:00 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 07.11. 11:00 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 14.11. 11:00 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 21.11. 11:00 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 28.11. 11:00 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 05.12. 11:00 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 12.12. 11:00 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 09.01. 11:00 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 16.01. 11:00 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 23.01. 11:00 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 30.01. 11:00 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

Analytic number theory deals with classical, often very easy to formulate and understand, questions on integers and prime numbers, and for solving them it uses many methods from Analysis.

In this introductory course I intend to present the basic number theoretic functions, their transformations and approximations, with ultimate goal proving the Prime number theorem and the Dirichlet's theorem on prime numbers in arithmetic progression.

If time permits I would sketch the recent breakthrough in the problem for small gaps between primes (Goldston-Pintz-Yildirm method and the theorems of Zhang and Maynard-Tao) .

Assessment and permitted materials

Oral exam

Minimum requirements and assessment criteria

Examination topics

Reading list

"Geometric and Analytic Number Theory", E. Hlawka et al.

Association in the course directory

MALV

Last modified: Mo 07.09.2020 15:40