Warning! The directory is not yet complete and will be amended until the beginning of the term.
250091 VO Algebraic topology (2020W)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Wednesday 27.01.2021
- Wednesday 27.01.2021
- Thursday 11.02.2021
- Thursday 18.02.2021
- Friday 19.02.2021
- Thursday 25.02.2021
- Tuesday 02.03.2021
- Friday 05.03.2021
- Monday 15.03.2021
- Wednesday 12.05.2021
- Thursday 30.09.2021
- Friday 22.10.2021
Lecturers
Classes (iCal) - next class is marked with N
website of the course:
https://vvertesi3.wixsite.com/website- Thursday 01.10. 11:30 - 13:00 Digital
- Monday 05.10. 13:00 - 14:30 Digital
- Thursday 08.10. 11:30 - 13:00 Digital
- Monday 12.10. 13:00 - 14:30 Digital
- Thursday 15.10. 11:30 - 13:00 Digital
- Monday 19.10. 13:00 - 14:30 Digital
- Thursday 22.10. 11:30 - 13:00 Digital
- Thursday 29.10. 11:30 - 13:00 Digital
- Thursday 05.11. 11:30 - 13:00 Digital
- Monday 09.11. 13:00 - 14:30 Digital
- Thursday 12.11. 11:30 - 13:00 Digital
- Monday 16.11. 13:00 - 14:30 Digital
- Thursday 19.11. 11:30 - 13:00 Digital
- Monday 23.11. 13:00 - 14:30 Digital
- Thursday 26.11. 11:30 - 13:00 Digital
- Monday 30.11. 13:00 - 14:30 Digital
- Thursday 03.12. 11:30 - 13:00 Digital
- Monday 07.12. 13:00 - 14:30 Digital
- Thursday 10.12. 11:30 - 13:00 Digital
- Monday 14.12. 13:00 - 14:30 Digital
- Thursday 17.12. 11:30 - 13:00 Digital
- Thursday 07.01. 11:30 - 13:00 Digital
- Monday 11.01. 13:00 - 14:30 Digital
- Thursday 14.01. 11:30 - 13:00 Digital
- Monday 18.01. 13:00 - 14:30 Digital
- Thursday 21.01. 11:30 - 13:00 Digital
- Monday 25.01. 13:00 - 14:30 Digital
- Thursday 28.01. 11:30 - 13:00 Digital
Information
Aims, contents and method of the course
This is an introductory course in algebraic topology. We will begin by covering the basics of homotopy theory, fundamental groups and covering spaces. We then move on to homology theory from various perspectives. Finally, we will develop as much cohomology theory as possible before the end of the semester.
Assessment and permitted materials
Oral exam (in case that presence examination is not possible then: online exam)
Minimum requirements and assessment criteria
The only prerequisite for the course is a basic understanding of point set topology, linear algebra and group theory.
Examination topics
The contents of the course
Reading list
Main textbook:-Hatcher: Algebraic Topology (available online at http://pi.math.cornell.edu/~hatcher/AT/ATpage.html )other books:Brendon: Topology and Geometry
Fomenko and Fuchs: Homotopical Topology
Dieck: Algebraic Topology
Fomenko and Fuchs: Homotopical Topology
Dieck: Algebraic Topology
Association in the course directory
Last modified: Fr 12.05.2023 00:21